ray/rllib/policy/tests/test_compute_log_likelihoods.py

154 lines
6 KiB
Python
Raw Normal View History

[RLlib] Policy.compute_log_likelihoods() and SAC refactor. (issue #7107) (#7124) * Exploration API (+EpsilonGreedy sub-class). * Exploration API (+EpsilonGreedy sub-class). * Cleanup/LINT. * Add `deterministic` to generic Trainer config (NOTE: this is still ignored by most Agents). * Add `error` option to deprecation_warning(). * WIP. * Bug fix: Get exploration-info for tf framework. Bug fix: Properly deprecate some DQN config keys. * WIP. * LINT. * WIP. * Split PerWorkerEpsilonGreedy out of EpsilonGreedy. Docstrings. * Fix bug in sampler.py in case Policy has self.exploration = None * Update rllib/agents/dqn/dqn.py Co-Authored-By: Eric Liang <ekhliang@gmail.com> * WIP. * Update rllib/agents/trainer.py Co-Authored-By: Eric Liang <ekhliang@gmail.com> * WIP. * Change requests. * LINT * In tune/utils/util.py::deep_update() Only keep deep_updat'ing if both original and value are dicts. If value is not a dict, set * Completely obsolete syn_replay_optimizer.py's parameters schedule_max_timesteps AND beta_annealing_fraction (replaced with prioritized_replay_beta_annealing_timesteps). * Update rllib/evaluation/worker_set.py Co-Authored-By: Eric Liang <ekhliang@gmail.com> * Review fixes. * Fix default value for DQN's exploration spec. * LINT * Fix recursion bug (wrong parent c'tor). * Do not pass timestep to get_exploration_info. * Update tf_policy.py * Fix some remaining issues with test cases and remove more deprecated DQN/APEX exploration configs. * Bug fix tf-action-dist * DDPG incompatibility bug fix with new DQN exploration handling (which is imported by DDPG). * Switch off exploration when getting action probs from off-policy-estimator's policy. * LINT * Fix test_checkpoint_restore.py. * Deprecate all SAC exploration (unused) configs. * Properly use `model.last_output()` everywhere. Instead of `model._last_output`. * WIP. * Take out set_epsilon from multi-agent-env test (not needed, decays anyway). * WIP. * Trigger re-test (flaky checkpoint-restore test). * WIP. * WIP. * Add test case for deterministic action sampling in PPO. * bug fix. * Added deterministic test cases for different Agents. * Fix problem with TupleActions in dynamic-tf-policy. * Separate supported_spaces tests so they can be run separately for easier debugging. * LINT. * Fix autoregressive_action_dist.py test case. * Re-test. * Fix. * Remove duplicate py_test rule from bazel. * LINT. * WIP. * WIP. * SAC fix. * SAC fix. * WIP. * WIP. * WIP. * FIX 2 examples tests. * WIP. * WIP. * WIP. * WIP. * WIP. * Fix. * LINT. * Renamed test file. * WIP. * Add unittest.main. * Make action_dist_class mandatory. * fix * FIX. * WIP. * WIP. * Fix. * Fix. * Fix explorations test case (contextlib cannot find its own nullcontext??). * Force torch to be installed for QMIX. * LINT. * Fix determine_tests_to_run.py. * Fix determine_tests_to_run.py. * WIP * Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function). * Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function). * Rename some stuff. * Rename some stuff. * WIP. * WIP. * Fix SAC. * Fix SAC. * Fix strange tf-error in ray core tests. * Fix strange ray-core tf-error in test_memory_scheduling test case. * Fix test_io.py. * LINT. * Update SAC yaml files' config. Co-authored-by: Eric Liang <ekhliang@gmail.com>
2020-02-22 23:19:49 +01:00
import numpy as np
from scipy.stats import norm
import unittest
import ray.rllib.agents.dqn as dqn
import ray.rllib.agents.ppo as ppo
import ray.rllib.agents.sac as sac
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.test_utils import check
from ray.rllib.utils.numpy import one_hot, fc, MIN_LOG_NN_OUTPUT, \
MAX_LOG_NN_OUTPUT
tf = try_import_tf()
def test_log_likelihood(run,
config,
prev_a=None,
continuous=False,
layer_key=("fc", (0, 4)),
logp_func=None):
config = config.copy()
# Run locally.
config["num_workers"] = 0
# Env setup.
if continuous:
env = "Pendulum-v0"
obs_batch = preprocessed_obs_batch = np.array([[0.0, 0.1, -0.1]])
else:
env = "FrozenLake-v0"
config["env_config"] = {"is_slippery": False, "map_name": "4x4"}
obs_batch = np.array([0])
preprocessed_obs_batch = one_hot(obs_batch, depth=16)
# Use Soft-Q for DQNs.
if run is dqn.DQNTrainer:
config["exploration_config"] = {"type": "SoftQ", "temperature": 0.5}
prev_r = None if prev_a is None else np.array(0.0)
# Test against all frameworks.
for fw in ["tf", "eager", "torch"]:
if run in [dqn.DQNTrainer, sac.SACTrainer] and fw == "torch":
continue
print("Testing {} with framework={}".format(run, fw))
config["eager"] = True if fw == "eager" else False
config["use_pytorch"] = True if fw == "torch" else False
trainer = run(config=config, env=env)
policy = trainer.get_policy()
vars = policy.get_weights()
# Sample n actions, then roughly check their logp against their
# counts.
num_actions = 500
actions = []
for _ in range(num_actions):
# Single action from single obs.
actions.append(
trainer.compute_action(
obs_batch[0],
prev_action=prev_a,
prev_reward=prev_r,
explore=True))
# Test 50 actions for their log-likelihoods vs expected values.
if continuous:
for idx in range(50):
a = actions[idx]
if fw == "tf" or fw == "eager":
if isinstance(vars, list):
expected_mean_logstd = fc(
fc(obs_batch, vars[layer_key[1][0]]),
vars[layer_key[1][1]])
else:
expected_mean_logstd = fc(
fc(
obs_batch,
vars["default_policy/{}_1/kernel".format(
layer_key[0])]),
vars["default_policy/{}_out/kernel".format(
layer_key[0])])
else:
expected_mean_logstd = fc(
fc(obs_batch,
vars["_hidden_layers.0._model.0.weight"]),
vars["_logits._model.0.weight"])
mean, log_std = np.split(expected_mean_logstd, 2, axis=-1)
if logp_func is None:
expected_logp = np.log(norm.pdf(a, mean, np.exp(log_std)))
else:
expected_logp = logp_func(mean, log_std, a)
logp = policy.compute_log_likelihoods(
np.array([a]),
preprocessed_obs_batch,
prev_action_batch=np.array([prev_a]),
prev_reward_batch=np.array([prev_r]))
check(logp, expected_logp[0], rtol=0.2)
# Test all available actions for their logp values.
else:
for a in [0, 1, 2, 3]:
count = actions.count(a)
expected_logp = np.log(count / num_actions)
logp = policy.compute_log_likelihoods(
np.array([a]),
preprocessed_obs_batch,
prev_action_batch=np.array([prev_a]),
prev_reward_batch=np.array([prev_r]))
check(logp, expected_logp, rtol=0.3)
class TestComputeLogLikelihood(unittest.TestCase):
def test_dqn(self):
"""Tests, whether DQN correctly computes logp in soft-q mode."""
test_log_likelihood(dqn.DQNTrainer, dqn.DEFAULT_CONFIG)
def test_ppo_cont(self):
"""Tests PPO's (cont. actions) compute_log_likelihoods method."""
config = ppo.DEFAULT_CONFIG.copy()
config["model"]["fcnet_hiddens"] = [10]
config["model"]["fcnet_activation"] = "linear"
prev_a = np.array([0.0])
test_log_likelihood(ppo.PPOTrainer, config, prev_a, continuous=True)
def test_ppo_discr(self):
"""Tests PPO's (discr. actions) compute_log_likelihoods method."""
prev_a = np.array(0)
test_log_likelihood(ppo.PPOTrainer, ppo.DEFAULT_CONFIG, prev_a)
def test_sac(self):
"""Tests SAC's compute_log_likelihoods method."""
config = sac.DEFAULT_CONFIG.copy()
config["policy_model"]["hidden_layer_sizes"] = [10]
config["policy_model"]["hidden_activation"] = "linear"
prev_a = np.array([0.0])
def logp_func(means, log_stds, values, low=-1.0, high=1.0):
stds = np.exp(
np.clip(log_stds, MIN_LOG_NN_OUTPUT, MAX_LOG_NN_OUTPUT))
unsquashed_values = np.arctanh((values - low) /
(high - low) * 2.0 - 1.0)
log_prob_unsquashed = \
np.sum(np.log(norm.pdf(unsquashed_values, means, stds)), -1)
return log_prob_unsquashed - \
np.sum(np.log(1 - np.tanh(unsquashed_values) ** 2),
axis=-1)
test_log_likelihood(
sac.SACTrainer,
config,
prev_a,
continuous=True,
layer_key=("sequential/action", (0, 2)),
logp_func=logp_func)