2020-09-15 03:37:07 -07:00
|
|
|
import queue
|
2020-05-21 10:16:18 -07:00
|
|
|
import threading
|
|
|
|
|
|
|
|
from ray.rllib.evaluation.metrics import get_learner_stats
|
|
|
|
from ray.rllib.policy.policy import LEARNER_STATS_KEY
|
2020-07-11 22:06:35 +02:00
|
|
|
from ray.rllib.utils.framework import try_import_tf
|
2020-05-21 10:16:18 -07:00
|
|
|
from ray.rllib.utils.timer import TimerStat
|
|
|
|
from ray.rllib.utils.window_stat import WindowStat
|
|
|
|
|
|
|
|
LEARNER_QUEUE_MAX_SIZE = 16
|
|
|
|
|
2020-07-11 22:06:35 +02:00
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
|
|
|
2020-05-21 10:16:18 -07:00
|
|
|
|
|
|
|
class LearnerThread(threading.Thread):
|
|
|
|
"""Background thread that updates the local model from replay data.
|
|
|
|
|
|
|
|
The learner thread communicates with the main thread through Queues. This
|
|
|
|
is needed since Ray operations can only be run on the main thread. In
|
|
|
|
addition, moving heavyweight gradient ops session runs off the main thread
|
|
|
|
improves overall throughput.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, local_worker):
|
|
|
|
threading.Thread.__init__(self)
|
|
|
|
self.learner_queue_size = WindowStat("size", 50)
|
|
|
|
self.local_worker = local_worker
|
|
|
|
self.inqueue = queue.Queue(maxsize=LEARNER_QUEUE_MAX_SIZE)
|
|
|
|
self.outqueue = queue.Queue()
|
|
|
|
self.queue_timer = TimerStat()
|
|
|
|
self.grad_timer = TimerStat()
|
|
|
|
self.overall_timer = TimerStat()
|
|
|
|
self.daemon = True
|
|
|
|
self.weights_updated = False
|
|
|
|
self.stopped = False
|
|
|
|
self.stats = {}
|
|
|
|
|
|
|
|
def run(self):
|
2020-07-11 22:06:35 +02:00
|
|
|
# Switch on eager mode if configured.
|
|
|
|
if self.local_worker.policy_config.get("framework") in ["tf2", "tfe"]:
|
|
|
|
tf1.enable_eager_execution()
|
2020-05-21 10:16:18 -07:00
|
|
|
while not self.stopped:
|
|
|
|
self.step()
|
|
|
|
|
|
|
|
def step(self):
|
|
|
|
with self.overall_timer:
|
|
|
|
with self.queue_timer:
|
|
|
|
ra, replay = self.inqueue.get()
|
|
|
|
if replay is not None:
|
|
|
|
prio_dict = {}
|
|
|
|
with self.grad_timer:
|
|
|
|
grad_out = self.local_worker.learn_on_batch(replay)
|
|
|
|
for pid, info in grad_out.items():
|
|
|
|
td_error = info.get(
|
|
|
|
"td_error",
|
|
|
|
info[LEARNER_STATS_KEY].get("td_error"))
|
2021-04-15 19:19:51 +02:00
|
|
|
prio_dict[pid] = (
|
|
|
|
replay.policy_batches[pid].get("batch_indexes"),
|
|
|
|
td_error)
|
2020-05-21 10:16:18 -07:00
|
|
|
self.stats[pid] = get_learner_stats(info)
|
|
|
|
self.grad_timer.push_units_processed(replay.count)
|
|
|
|
self.outqueue.put((ra, prio_dict, replay.count))
|
|
|
|
self.learner_queue_size.push(self.inqueue.qsize())
|
|
|
|
self.weights_updated = True
|
|
|
|
self.overall_timer.push_units_processed(replay and replay.count
|
|
|
|
or 0)
|