2020-04-16 10:20:01 +02:00
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
from ray.rllib.models.torch.misc import SlimFC
|
|
|
|
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
|
|
|
|
from ray.rllib.utils.framework import try_import_torch, get_activation_fn
|
|
|
|
|
|
|
|
torch, nn = try_import_torch()
|
|
|
|
|
|
|
|
|
|
|
|
class DDPGTorchModel(TorchModelV2, nn.Module):
|
|
|
|
"""Extension of standard TorchModelV2 for DDPG.
|
|
|
|
|
|
|
|
Data flow:
|
|
|
|
obs -> forward() -> model_out
|
|
|
|
model_out -> get_policy_output() -> pi(s)
|
|
|
|
model_out, actions -> get_q_values() -> Q(s, a)
|
|
|
|
model_out, actions -> get_twin_q_values() -> Q_twin(s, a)
|
|
|
|
|
|
|
|
Note that this class by itself is not a valid model unless you
|
|
|
|
implement forward() in a subclass."""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
obs_space,
|
|
|
|
action_space,
|
|
|
|
num_outputs,
|
|
|
|
model_config,
|
|
|
|
name,
|
|
|
|
actor_hidden_activation="relu",
|
|
|
|
actor_hiddens=(256, 256),
|
|
|
|
critic_hidden_activation="relu",
|
|
|
|
critic_hiddens=(256, 256),
|
|
|
|
twin_q=False,
|
|
|
|
add_layer_norm=False):
|
|
|
|
"""Initialize variables of this model.
|
|
|
|
|
|
|
|
Extra model kwargs:
|
|
|
|
actor_hidden_activation (str): activation for actor network
|
|
|
|
actor_hiddens (list): hidden layers sizes for actor network
|
|
|
|
critic_hidden_activation (str): activation for critic network
|
|
|
|
critic_hiddens (list): hidden layers sizes for critic network
|
|
|
|
twin_q (bool): build twin Q networks.
|
|
|
|
add_layer_norm (bool): Enable layer norm (for param noise).
|
|
|
|
|
|
|
|
Note that the core layers for forward() are not defined here, this
|
|
|
|
only defines the layers for the output heads. Those layers for
|
|
|
|
forward() should be defined in subclasses of DDPGTorchModel.
|
|
|
|
"""
|
|
|
|
nn.Module.__init__(self)
|
2020-05-12 08:23:10 +02:00
|
|
|
super(DDPGTorchModel, self).__init__(obs_space, action_space,
|
|
|
|
num_outputs, model_config, name)
|
2020-04-16 10:20:01 +02:00
|
|
|
|
2020-05-04 22:27:30 +02:00
|
|
|
self.bounded = np.logical_and(action_space.bounded_above,
|
|
|
|
action_space.bounded_below).any()
|
2020-07-28 14:15:03 +02:00
|
|
|
self.low_action = torch.tensor(action_space.low, dtype=torch.float32)
|
|
|
|
self.action_range = torch.tensor(
|
|
|
|
action_space.high - action_space.low, dtype=torch.float32)
|
2020-04-16 10:20:01 +02:00
|
|
|
self.action_dim = np.product(action_space.shape)
|
|
|
|
|
|
|
|
# Build the policy network.
|
|
|
|
self.policy_model = nn.Sequential()
|
2020-05-12 08:23:10 +02:00
|
|
|
ins = num_outputs
|
2020-04-16 10:20:01 +02:00
|
|
|
self.obs_ins = ins
|
|
|
|
activation = get_activation_fn(
|
|
|
|
actor_hidden_activation, framework="torch")
|
|
|
|
for i, n in enumerate(actor_hiddens):
|
|
|
|
self.policy_model.add_module(
|
|
|
|
"action_{}".format(i),
|
|
|
|
SlimFC(
|
|
|
|
ins,
|
|
|
|
n,
|
|
|
|
initializer=torch.nn.init.xavier_uniform_,
|
|
|
|
activation_fn=activation))
|
|
|
|
# Add LayerNorm after each Dense.
|
|
|
|
if add_layer_norm:
|
|
|
|
self.policy_model.add_module("LayerNorm_A_{}".format(i),
|
|
|
|
nn.LayerNorm(n))
|
|
|
|
ins = n
|
|
|
|
|
|
|
|
self.policy_model.add_module(
|
|
|
|
"action_out",
|
|
|
|
SlimFC(
|
|
|
|
ins,
|
|
|
|
self.action_dim,
|
|
|
|
initializer=torch.nn.init.xavier_uniform_,
|
|
|
|
activation_fn=None))
|
|
|
|
|
2020-04-26 23:08:13 +02:00
|
|
|
# Use sigmoid to scale to [0,1], but also double magnitude of input to
|
|
|
|
# emulate behaviour of tanh activation used in DDPG and TD3 papers.
|
2020-05-04 22:27:30 +02:00
|
|
|
# After sigmoid squashing, re-scale to env action space bounds.
|
2020-04-26 23:08:13 +02:00
|
|
|
class _Lambda(nn.Module):
|
2020-05-04 22:27:30 +02:00
|
|
|
def forward(self_, x):
|
2020-04-26 23:08:13 +02:00
|
|
|
sigmoid_out = nn.Sigmoid()(2.0 * x)
|
2020-05-04 22:27:30 +02:00
|
|
|
squashed = self.action_range * sigmoid_out + self.low_action
|
|
|
|
return squashed
|
2020-04-26 23:08:13 +02:00
|
|
|
|
2020-05-04 22:27:30 +02:00
|
|
|
# Only squash if we have bounded actions.
|
|
|
|
if self.bounded:
|
|
|
|
self.policy_model.add_module("action_out_squashed", _Lambda())
|
2020-04-26 23:08:13 +02:00
|
|
|
|
2020-04-16 10:20:01 +02:00
|
|
|
# Build the Q-net(s), including target Q-net(s).
|
|
|
|
def build_q_net(name_):
|
|
|
|
activation = get_activation_fn(
|
|
|
|
critic_hidden_activation, framework="torch")
|
|
|
|
# For continuous actions: Feed obs and actions (concatenated)
|
|
|
|
# through the NN. For discrete actions, only obs.
|
|
|
|
q_net = nn.Sequential()
|
|
|
|
ins = self.obs_ins + self.action_dim
|
|
|
|
for i, n in enumerate(critic_hiddens):
|
|
|
|
q_net.add_module(
|
|
|
|
"{}_hidden_{}".format(name_, i),
|
|
|
|
SlimFC(
|
|
|
|
ins,
|
|
|
|
n,
|
|
|
|
initializer=torch.nn.init.xavier_uniform_,
|
|
|
|
activation_fn=activation))
|
|
|
|
ins = n
|
|
|
|
|
|
|
|
q_net.add_module(
|
|
|
|
"{}_out".format(name_),
|
|
|
|
SlimFC(
|
|
|
|
ins,
|
|
|
|
1,
|
|
|
|
initializer=torch.nn.init.xavier_uniform_,
|
|
|
|
activation_fn=None))
|
|
|
|
return q_net
|
|
|
|
|
|
|
|
self.q_model = build_q_net("q")
|
|
|
|
if twin_q:
|
|
|
|
self.twin_q_model = build_q_net("twin_q")
|
|
|
|
else:
|
|
|
|
self.twin_q_model = None
|
|
|
|
|
|
|
|
def get_q_values(self, model_out, actions):
|
|
|
|
"""Return the Q estimates for the most recent forward pass.
|
|
|
|
|
|
|
|
This implements Q(s, a).
|
|
|
|
|
2020-09-20 11:27:02 +02:00
|
|
|
Args:
|
2020-04-16 10:20:01 +02:00
|
|
|
model_out (Tensor): obs embeddings from the model layers, of shape
|
|
|
|
[BATCH_SIZE, num_outputs].
|
|
|
|
actions (Tensor): Actions to return the Q-values for.
|
|
|
|
Shape: [BATCH_SIZE, action_dim].
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
tensor of shape [BATCH_SIZE].
|
|
|
|
"""
|
|
|
|
return self.q_model(torch.cat([model_out, actions], -1))
|
|
|
|
|
|
|
|
def get_twin_q_values(self, model_out, actions):
|
|
|
|
"""Same as get_q_values but using the twin Q net.
|
|
|
|
|
|
|
|
This implements the twin Q(s, a).
|
|
|
|
|
2020-09-20 11:27:02 +02:00
|
|
|
Args:
|
2020-04-16 10:20:01 +02:00
|
|
|
model_out (Tensor): obs embeddings from the model layers, of shape
|
|
|
|
[BATCH_SIZE, num_outputs].
|
|
|
|
actions (Optional[Tensor]): Actions to return the Q-values for.
|
|
|
|
Shape: [BATCH_SIZE, action_dim].
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
tensor of shape [BATCH_SIZE].
|
|
|
|
"""
|
|
|
|
return self.twin_q_model(torch.cat([model_out, actions], -1))
|
|
|
|
|
|
|
|
def get_policy_output(self, model_out):
|
|
|
|
"""Return the action output for the most recent forward pass.
|
|
|
|
|
|
|
|
This outputs the support for pi(s). For continuous action spaces, this
|
|
|
|
is the action directly. For discrete, is is the mean / std dev.
|
|
|
|
|
2020-09-20 11:27:02 +02:00
|
|
|
Args:
|
2020-04-16 10:20:01 +02:00
|
|
|
model_out (Tensor): obs embeddings from the model layers, of shape
|
|
|
|
[BATCH_SIZE, num_outputs].
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
tensor of shape [BATCH_SIZE, action_out_size]
|
|
|
|
"""
|
|
|
|
return self.policy_model(model_out)
|
|
|
|
|
|
|
|
def policy_variables(self, as_dict=False):
|
|
|
|
"""Return the list of variables for the policy net."""
|
|
|
|
if as_dict:
|
|
|
|
return self.policy_model.state_dict()
|
|
|
|
return list(self.policy_model.parameters())
|
|
|
|
|
|
|
|
def q_variables(self, as_dict=False):
|
|
|
|
"""Return the list of variables for Q / twin Q nets."""
|
|
|
|
if as_dict:
|
|
|
|
return {
|
|
|
|
**self.q_model.state_dict(),
|
|
|
|
**(self.twin_q_model.state_dict() if self.twin_q_model else {})
|
|
|
|
}
|
|
|
|
return list(self.q_model.parameters()) + \
|
|
|
|
(list(self.twin_q_model.parameters()) if self.twin_q_model else [])
|