ray/rllib/agents/ppo/appo.py

104 lines
3.2 KiB
Python
Raw Normal View History

from ray.rllib.agents.impala.impala import validate_config
from ray.rllib.agents.ppo.appo_tf_policy import AsyncPPOTFPolicy
from ray.rllib.agents.ppo.ppo import update_kl
from ray.rllib.agents.trainer import with_base_config
from ray.rllib.agents import impala
# yapf: disable
# __sphinx_doc_begin__
DEFAULT_CONFIG = with_base_config(impala.DEFAULT_CONFIG, {
# Whether to use V-trace weighted advantages. If false, PPO GAE advantages
# will be used instead.
"vtrace": False,
# == These two options only apply if vtrace: False ==
# Should use a critic as a baseline (otherwise don't use value baseline;
# required for using GAE).
"use_critic": True,
# If true, use the Generalized Advantage Estimator (GAE)
# with a value function, see https://arxiv.org/pdf/1506.02438.pdf.
"use_gae": True,
# GAE(lambda) parameter
"lambda": 1.0,
# == PPO surrogate loss options ==
"clip_param": 0.4,
# == PPO KL Loss options ==
"use_kl_loss": False,
"kl_coeff": 1.0,
"kl_target": 0.01,
# == IMPALA optimizer params (see documentation in impala.py) ==
"rollout_fragment_length": 50,
"train_batch_size": 500,
"min_iter_time_s": 10,
"num_workers": 2,
"num_gpus": 0,
"num_data_loader_buffers": 1,
"minibatch_buffer_size": 1,
"num_sgd_iter": 1,
"replay_proportion": 0.0,
"replay_buffer_num_slots": 100,
"learner_queue_size": 16,
"learner_queue_timeout": 300,
"max_sample_requests_in_flight_per_worker": 2,
"broadcast_interval": 1,
"grad_clip": 40.0,
"opt_type": "adam",
"lr": 0.0005,
"lr_schedule": None,
"decay": 0.99,
"momentum": 0.0,
"epsilon": 0.1,
"vf_loss_coeff": 0.5,
"entropy_coeff": 0.01,
"entropy_coeff_schedule": None,
# TODO: impl update target.
"use_exec_api": False,
})
# __sphinx_doc_end__
# yapf: enable
def update_target_and_kl(trainer, fetches):
# Update the KL coeff depending on how many steps LearnerThread has stepped
# through
learner_steps = trainer.optimizer.learner.num_steps
if learner_steps >= trainer.target_update_frequency:
# Update Target Network
trainer.optimizer.learner.num_steps = 0
trainer.workers.local_worker().foreach_trainable_policy(
lambda p, _: p.update_target())
# Also update KL Coeff
if trainer.config["use_kl_loss"]:
update_kl(trainer, trainer.optimizer.learner.stats)
def initialize_target(trainer):
trainer.workers.local_worker().foreach_trainable_policy(
lambda p, _: p.update_target())
trainer.target_update_frequency = trainer.config["num_sgd_iter"] \
* trainer.config["minibatch_buffer_size"]
def get_policy_class(config):
if config.get("use_pytorch") is True:
from ray.rllib.agents.ppo.appo_torch_policy import AsyncPPOTorchPolicy
return AsyncPPOTorchPolicy
else:
return AsyncPPOTFPolicy
APPOTrainer = impala.ImpalaTrainer.with_updates(
name="APPO",
default_config=DEFAULT_CONFIG,
validate_config=validate_config,
default_policy=AsyncPPOTFPolicy,
get_policy_class=get_policy_class,
after_init=initialize_target,
after_optimizer_step=update_target_and_kl)