2022-05-13 11:56:34 +01:00
.. _air-examples-ref:
========
Examples
========
2022-05-26 12:28:28 -07:00
2022-06-06 15:15:11 -07:00
Framework-specific Examples
---------------------------
- :doc: `/ray-air/examples/lightgbm_example` : Distributed training with LightGBM
2022-07-05 17:16:56 -07:00
- :doc: `/ray-air/examples/xgboost_example` : Distributed training with XGBoost
2022-06-06 15:15:11 -07:00
- :doc: `/ray-air/examples/sklearn_example` : Integrating with Scikit-Learn (non-distributed)
2022-06-15 03:11:32 +02:00
- :doc: `/ray-air/examples/convert_existing_pytorch_code_to_ray_air` : How to get started with Ray AIR from your code base
2022-06-06 15:15:11 -07:00
Tabular Data
------------
2022-05-26 12:28:28 -07:00
- :doc: `/ray-air/examples/tfx_tabular_train_to_serve` : How to use Ray AIR to train a Keras model on tabular data and serve it.
2022-06-06 15:15:11 -07:00
Text/NLP
--------
2022-05-26 12:28:28 -07:00
- :doc: `/ray-air/examples/huggingface_text_classification` : How to use Ray AIR to run Hugging Face Transformers fine-tuning on a text classification task.
2022-06-06 15:15:11 -07:00
Image/CV
--------
- :doc: `/ray-air/examples/torch_image_example`
2022-05-13 11:56:34 +01:00
2022-06-24 02:51:01 +02:00
Logging & Observability
-----------------------
- :doc: `/ray-air/examples/upload_to_comet_ml` : How to log results and upload models to Comet ML.
- :doc: `/ray-air/examples/upload_to_wandb` : How to log results and upload models to Weights and Biases.
.. _air-rl-examples-ref:
2022-06-06 15:15:11 -07:00
RL (RLlib)
----------
2022-05-13 11:56:34 +01:00
2022-06-06 15:15:11 -07:00
- :doc: `/ray-air/examples/rl_serving_example`
- :doc: `/ray-air/examples/rl_online_example`
- :doc: `/ray-air/examples/rl_offline_example`
2022-05-18 18:35:12 +02:00
2022-06-06 15:15:11 -07:00
Advanced
2022-05-19 14:01:49 +01:00
--------
2022-06-06 15:15:11 -07:00
- :doc: `/ray-air/examples/torch_incremental_learning` : Incrementally train and deploy a PyTorch CV model
2022-06-07 14:55:42 -07:00
- :doc: `/ray-air/examples/feast_example` : Integrate with Feast feature store in both train and inference