ray/rllib/contrib/bandits/examples/tune_LinTS_train_wheel_env.py

81 lines
2.4 KiB
Python
Raw Normal View History

""" Example of using Linear Thompson Sampling on WheelBandit environment.
For more information on WheelBandit, see https://arxiv.org/abs/1802.09127 .
"""
import time
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from ray import tune
from ray.rllib.contrib.bandits.agents import LinTSTrainer
from ray.rllib.contrib.bandits.agents.lin_ts import TS_CONFIG
from ray.rllib.contrib.bandits.envs import WheelBanditEnv
def plot_model_weights(means, covs, ax):
fmts = ["bo", "ro", "yx", "k+", "gx"]
labels = ["arm{}".format(i) for i in range(5)]
ax.set_title("Weights distributions of arms")
for i in range(0, 5):
x, y = np.random.multivariate_normal(means[i] / 30, covs[i], 5000).T
ax.plot(x, y, fmts[i], label=labels[i])
ax.set_aspect("equal")
ax.grid(True, which="both")
ax.axhline(y=0, color="k")
ax.axvline(x=0, color="k")
ax.legend(loc="best")
if __name__ == "__main__":
TS_CONFIG["env"] = WheelBanditEnv
# Actual training_iterations will be 20 * timesteps_per_iteration
# (100 by default) = 2,000
training_iterations = 20
print("Running training for %s time steps" % training_iterations)
start_time = time.time()
analysis = tune.run(
LinTSTrainer,
config=TS_CONFIG,
stop={"training_iteration": training_iterations},
num_samples=2,
checkpoint_at_end=True)
print("The trials took", time.time() - start_time, "seconds\n")
# Analyze cumulative regrets of the trials
frame = pd.DataFrame()
for key, df in analysis.trial_dataframes.items():
frame = frame.append(df, ignore_index=True)
x = frame.groupby("num_steps_trained")[
"learner/cumulative_regret"].aggregate(["mean", "max", "min", "std"])
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
ax1.plot(x["mean"])
ax1.set_title("Cumulative Regret")
ax1.set_xlabel("Training steps")
# Restore trainer from checkpoint
trial = analysis.trials[0]
trainer = LinTSTrainer(config=TS_CONFIG)
trainer.restore(trial.checkpoint.value)
# Get model to plot arm weights distribution
model = trainer.get_policy().model
means = [model.arms[i].theta.numpy() for i in range(5)]
covs = [model.arms[i].covariance.numpy() for i in range(5)]
# Plot weight distributions for different arms
plot_model_weights(means, covs, ax2)
fig.tight_layout()
plt.show()