ray/rllib/agents/a3c/a3c_torch_policy.py

86 lines
2.9 KiB
Python
Raw Normal View History

import ray
from ray.rllib.evaluation.postprocessing import compute_advantages, \
Postprocessing
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.policy.torch_policy_template import build_torch_policy
from ray.rllib.utils.framework import try_import_torch
torch, nn = try_import_torch()
def actor_critic_loss(policy, model, dist_class, train_batch):
logits, _ = model.from_batch(train_batch)
values = model.value_function()
dist = dist_class(logits, model)
log_probs = dist.logp(train_batch[SampleBatch.ACTIONS])
policy.entropy = dist.entropy().mean()
policy.pi_err = -train_batch[Postprocessing.ADVANTAGES].dot(
log_probs.reshape(-1))
policy.value_err = nn.functional.mse_loss(
values.reshape(-1), train_batch[Postprocessing.VALUE_TARGETS])
overall_err = sum([
policy.pi_err,
policy.config["vf_loss_coeff"] * policy.value_err,
-policy.config["entropy_coeff"] * policy.entropy,
])
return overall_err
def loss_and_entropy_stats(policy, train_batch):
return {
"policy_entropy": policy.entropy.item(),
"policy_loss": policy.pi_err.item(),
"vf_loss": policy.value_err.item(),
}
def add_advantages(policy,
sample_batch,
other_agent_batches=None,
episode=None):
completed = sample_batch[SampleBatch.DONES][-1]
if completed:
last_r = 0.0
else:
last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1])
return compute_advantages(
sample_batch, last_r, policy.config["gamma"], policy.config["lambda"],
policy.config["use_gae"], policy.config["use_critic"])
def model_value_predictions(policy, input_dict, state_batches, model,
action_dist):
return {SampleBatch.VF_PREDS: model.value_function().cpu().numpy()}
def apply_grad_clipping(policy):
info = {}
if policy.config["grad_clip"]:
total_norm = nn.utils.clip_grad_norm_(policy.model.parameters(),
policy.config["grad_clip"])
info["grad_gnorm"] = total_norm
return info
def torch_optimizer(policy, config):
return torch.optim.Adam(policy.model.parameters(), lr=config["lr"])
class ValueNetworkMixin:
[rllib] Modularize Torch and TF policy graphs (#2294) * wip * cls * re * wip * wip * a3c working * torch support * pg works * lint * rm v2 * consumer id * clean up pg * clean up more * fix python 2.7 * tf session management * docs * dqn wip * fix compile * dqn * apex runs * up * impotrs * ddpg * quotes * fix tests * fix last r * fix tests * lint * pass checkpoint restore * kwar * nits * policy graph * fix yapf * com * class * pyt * vectorization * update * test cpe * unit test * fix ddpg2 * changes * wip * args * faster test * common * fix * add alg option * batch mode and policy serving * multi serving test * todo * wip * serving test * doc async env * num envs * comments * thread * remove init hook * update * fix ppo * comments1 * fix * updates * add jenkins tests * fix * fix pytorch * fix * fixes * fix a3c policy * fix squeeze * fix trunc on apex * fix squeezing for real * update * remove horizon test for now * multiagent wip * update * fix race condition * fix ma * t * doc * st * wip * example * wip * working * cartpole * wip * batch wip * fix bug * make other_batches None default * working * debug * nit * warn * comments * fix ppo * fix obs filter * update * wip * tf * update * fix * cleanup * cleanup * spacing * model * fix * dqn * fix ddpg * doc * keep names * update * fix * com * docs * clarify model outputs * Update torch_policy_graph.py * fix obs filter * pass thru worker index * fix * rename * vlad torch comments * fix log action * debug name * fix lstm * remove unused ddpg net * remove conv net * revert lstm * cast * clean up * fix lstm check * move to end * fix sphinx * fix cmd * remove bad doc * clarify * copy * async sa * fix
2018-06-26 13:17:15 -07:00
def _value(self, obs):
obs = torch.from_numpy(obs).float().unsqueeze(0).to(self.device)
_ = self.model({"obs": obs}, [], [1])
return self.model.value_function().detach().cpu().numpy().squeeze()
A3CTorchPolicy = build_torch_policy(
name="A3CTorchPolicy",
get_default_config=lambda: ray.rllib.agents.a3c.a3c.DEFAULT_CONFIG,
loss_fn=actor_critic_loss,
stats_fn=loss_and_entropy_stats,
postprocess_fn=add_advantages,
extra_action_out_fn=model_value_predictions,
extra_grad_process_fn=apply_grad_clipping,
optimizer_fn=torch_optimizer,
mixins=[ValueNetworkMixin])