ray/rllib/models/tf/visionnet.py

119 lines
4.7 KiB
Python
Raw Normal View History

from ray.rllib.models.tf.tf_modelv2 import TFModelV2
from ray.rllib.models.tf.visionnet_v1 import _get_filter_config
from ray.rllib.models.tf.misc import normc_initializer
from ray.rllib.utils.framework import get_activation_fn, try_import_tf
tf = try_import_tf()
class VisionNetwork(TFModelV2):
"""Generic vision network implemented in ModelV2 API."""
def __init__(self, obs_space, action_space, num_outputs, model_config,
name):
super(VisionNetwork, self).__init__(obs_space, action_space,
num_outputs, model_config, name)
activation = get_activation_fn(model_config.get("conv_activation"))
filters = model_config.get("conv_filters")
if not filters:
filters = _get_filter_config(obs_space.shape)
no_final_linear = model_config.get("no_final_linear")
vf_share_layers = model_config.get("vf_share_layers")
inputs = tf.keras.layers.Input(
shape=obs_space.shape, name="observations")
last_layer = inputs
# Build the action layers
for i, (out_size, kernel, stride) in enumerate(filters[:-1], 1):
last_layer = tf.keras.layers.Conv2D(
out_size,
kernel,
strides=(stride, stride),
activation=activation,
padding="same",
data_format="channels_last",
name="conv{}".format(i))(last_layer)
out_size, kernel, stride = filters[-1]
# No final linear: Last layer is a Conv2D and uses num_outputs.
if no_final_linear:
last_layer = tf.keras.layers.Conv2D(
num_outputs,
kernel,
strides=(stride, stride),
activation=activation,
padding="valid",
data_format="channels_last",
name="conv_out")(last_layer)
conv_out = last_layer
# Finish network normally (w/o overriding last layer size with
# `num_outputs`), then add another linear one of size `num_outputs`.
else:
last_layer = tf.keras.layers.Conv2D(
out_size,
kernel,
strides=(stride, stride),
activation=activation,
padding="valid",
data_format="channels_last",
name="conv{}".format(i + 1))(last_layer)
conv_out = tf.keras.layers.Conv2D(
num_outputs, [1, 1],
activation=None,
padding="same",
data_format="channels_last",
name="conv_out")(last_layer)
# Build the value layers
if vf_share_layers:
last_layer = tf.keras.layers.Lambda(
lambda x: tf.squeeze(x, axis=[1, 2]))(last_layer)
value_out = tf.keras.layers.Dense(
1,
name="value_out",
activation=None,
kernel_initializer=normc_initializer(0.01))(last_layer)
else:
# build a parallel set of hidden layers for the value net
last_layer = inputs
for i, (out_size, kernel, stride) in enumerate(filters[:-1], 1):
last_layer = tf.keras.layers.Conv2D(
out_size,
kernel,
strides=(stride, stride),
activation=activation,
padding="same",
data_format="channels_last",
name="conv_value_{}".format(i))(last_layer)
out_size, kernel, stride = filters[-1]
last_layer = tf.keras.layers.Conv2D(
out_size,
kernel,
strides=(stride, stride),
activation=activation,
padding="valid",
data_format="channels_last",
name="conv_value_{}".format(i + 1))(last_layer)
last_layer = tf.keras.layers.Conv2D(
1, [1, 1],
activation=None,
padding="same",
data_format="channels_last",
name="conv_value_out")(last_layer)
value_out = tf.keras.layers.Lambda(
lambda x: tf.squeeze(x, axis=[1, 2]))(last_layer)
self.base_model = tf.keras.Model(inputs, [conv_out, value_out])
self.register_variables(self.base_model.variables)
def forward(self, input_dict, state, seq_lens):
# explicit cast to float32 needed in eager
model_out, self._value_out = self.base_model(
tf.cast(input_dict["obs"], tf.float32))
return tf.squeeze(model_out, axis=[1, 2]), state
def value_function(self):
return tf.reshape(self._value_out, [-1])