ray/rllib/tests/test_nested_observation_spaces.py

584 lines
20 KiB
Python
Raw Normal View History

from gym import spaces
from gym.envs.registration import EnvSpec
import gym
import numpy as np
import pickle
import unittest
import ray
from ray.rllib.agents.a3c import A2CTrainer
from ray.rllib.agents.pg import PGTrainer
from ray.rllib.agents.pg.pg_tf_policy import PGTFPolicy
from ray.rllib.env import MultiAgentEnv
from ray.rllib.env.base_env import BaseEnv
from ray.rllib.env.vector_env import VectorEnv
from ray.rllib.models import ModelCatalog
from ray.rllib.models.tf.tf_modelv2 import TFModelV2
2019-07-03 15:59:47 -07:00
from ray.rllib.models.torch.fcnet import FullyConnectedNetwork
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
from ray.rllib.rollout import rollout
from ray.rllib.tests.test_external_env import SimpleServing
from ray.tune.registry import register_env
from ray.rllib.utils.framework import try_import_tf, try_import_torch
from ray.rllib.utils.numpy import one_hot
from ray.rllib.utils.spaces.repeated import Repeated
from ray.rllib.utils.test_utils import check
tf1, tf, tfv = try_import_tf()
_, nn = try_import_torch()
DICT_SPACE = spaces.Dict({
"sensors": spaces.Dict({
"position": spaces.Box(low=-100, high=100, shape=(3, )),
"velocity": spaces.Box(low=-1, high=1, shape=(3, )),
"front_cam": spaces.Tuple(
(spaces.Box(low=0, high=1, shape=(10, 10, 3)),
spaces.Box(low=0, high=1, shape=(10, 10, 3)))),
"rear_cam": spaces.Box(low=0, high=1, shape=(10, 10, 3)),
}),
"inner_state": spaces.Dict({
"charge": spaces.Discrete(100),
"job_status": spaces.Dict({
"task": spaces.Discrete(5),
"progress": spaces.Box(low=0, high=100, shape=()),
})
})
})
DICT_SAMPLES = [DICT_SPACE.sample() for _ in range(10)]
TUPLE_SPACE = spaces.Tuple([
spaces.Box(low=-100, high=100, shape=(3, )),
spaces.Tuple((spaces.Box(low=0, high=1, shape=(10, 10, 3)),
spaces.Box(low=0, high=1, shape=(10, 10, 3)))),
spaces.Discrete(5),
])
TUPLE_SAMPLES = [TUPLE_SPACE.sample() for _ in range(10)]
# Constraints on the Repeated space.
MAX_PLAYERS = 4
MAX_ITEMS = 7
MAX_EFFECTS = 2
ITEM_SPACE = spaces.Box(-5, 5, shape=(1, ))
EFFECT_SPACE = spaces.Box(9000, 9999, shape=(4, ))
PLAYER_SPACE = spaces.Dict({
"location": spaces.Box(-100, 100, shape=(2, )),
"items": Repeated(ITEM_SPACE, max_len=MAX_ITEMS),
"effects": Repeated(EFFECT_SPACE, max_len=MAX_EFFECTS),
"status": spaces.Box(-1, 1, shape=(10, )),
})
REPEATED_SPACE = Repeated(PLAYER_SPACE, max_len=MAX_PLAYERS)
REPEATED_SAMPLES = [REPEATED_SPACE.sample() for _ in range(10)]
class NestedDictEnv(gym.Env):
def __init__(self):
self.action_space = spaces.Discrete(2)
self.observation_space = DICT_SPACE
self._spec = EnvSpec("NestedDictEnv-v0")
self.steps = 0
def reset(self):
self.steps = 0
return DICT_SAMPLES[0]
def step(self, action):
self.steps += 1
return DICT_SAMPLES[self.steps], 1, self.steps >= 5, {}
class NestedTupleEnv(gym.Env):
def __init__(self):
self.action_space = spaces.Discrete(2)
self.observation_space = TUPLE_SPACE
self._spec = EnvSpec("NestedTupleEnv-v0")
self.steps = 0
def reset(self):
self.steps = 0
return TUPLE_SAMPLES[0]
def step(self, action):
self.steps += 1
return TUPLE_SAMPLES[self.steps], 1, self.steps >= 5, {}
class RepeatedSpaceEnv(gym.Env):
def __init__(self):
self.action_space = spaces.Discrete(2)
self.observation_space = REPEATED_SPACE
self._spec = EnvSpec("RepeatedSpaceEnv-v0")
self.steps = 0
def reset(self):
self.steps = 0
return REPEATED_SAMPLES[0]
def step(self, action):
self.steps += 1
return REPEATED_SAMPLES[self.steps], 1, self.steps >= 5, {}
class NestedMultiAgentEnv(MultiAgentEnv):
def __init__(self):
self.steps = 0
def reset(self):
return {
"dict_agent": DICT_SAMPLES[0],
"tuple_agent": TUPLE_SAMPLES[0],
}
def step(self, actions):
self.steps += 1
obs = {
"dict_agent": DICT_SAMPLES[self.steps],
"tuple_agent": TUPLE_SAMPLES[self.steps],
}
rew = {
"dict_agent": 0,
"tuple_agent": 0,
}
dones = {"__all__": self.steps >= 5}
infos = {
"dict_agent": {},
"tuple_agent": {},
}
return obs, rew, dones, infos
class InvalidModel(TorchModelV2):
def forward(self, input_dict, state, seq_lens):
return "not", "valid"
class InvalidModel2(TFModelV2):
def forward(self, input_dict, state, seq_lens):
return tf.constant(0), tf.constant(0)
class TorchSpyModel(TorchModelV2, nn.Module):
capture_index = 0
def __init__(self, obs_space, action_space, num_outputs, model_config,
name):
TorchModelV2.__init__(self, obs_space, action_space, num_outputs,
model_config, name)
nn.Module.__init__(self)
self.fc = FullyConnectedNetwork(
obs_space.original_space.spaces["sensors"].spaces["position"],
action_space, num_outputs, model_config, name)
def forward(self, input_dict, state, seq_lens):
pos = input_dict["obs"]["sensors"]["position"].detach().cpu().numpy()
front_cam = input_dict["obs"]["sensors"]["front_cam"][
0].detach().cpu().numpy()
task = input_dict["obs"]["inner_state"]["job_status"][
"task"].detach().cpu().numpy()
ray.experimental.internal_kv._internal_kv_put(
"torch_spy_in_{}".format(TorchSpyModel.capture_index),
pickle.dumps((pos, front_cam, task)),
overwrite=True)
TorchSpyModel.capture_index += 1
return self.fc({
"obs": input_dict["obs"]["sensors"]["position"]
}, state, seq_lens)
def value_function(self):
return self.fc.value_function()
class TorchRepeatedSpyModel(TorchModelV2, nn.Module):
capture_index = 0
def __init__(self, obs_space, action_space, num_outputs, model_config,
name):
TorchModelV2.__init__(self, obs_space, action_space, num_outputs,
model_config, name)
nn.Module.__init__(self)
self.fc = FullyConnectedNetwork(
obs_space.original_space.child_space["location"], action_space,
num_outputs, model_config, name)
def forward(self, input_dict, state, seq_lens):
ray.experimental.internal_kv._internal_kv_put(
"torch_rspy_in_{}".format(TorchRepeatedSpyModel.capture_index),
pickle.dumps(input_dict["obs"].unbatch_all()),
overwrite=True)
TorchRepeatedSpyModel.capture_index += 1
return self.fc({
"obs": input_dict["obs"].values["location"][:, 0]
}, state, seq_lens)
def value_function(self):
return self.fc.value_function()
def to_list(value):
if isinstance(value, list):
return [to_list(x) for x in value]
elif isinstance(value, dict):
return {k: to_list(v) for k, v in value.items()}
elif isinstance(value, np.ndarray):
return value.tolist()
elif isinstance(value, int):
return value
else:
return value.detach().cpu().numpy().tolist()
class DictSpyModel(TFModelV2):
capture_index = 0
def __init__(self, obs_space, action_space, num_outputs, model_config,
name):
super().__init__(obs_space, action_space, None, model_config, name)
# Will only feed in sensors->pos.
input_ = tf.keras.layers.Input(
shape=self.obs_space.original_space["sensors"]["position"].shape)
self.num_outputs = num_outputs or 64
out = tf.keras.layers.Dense(self.num_outputs)(input_)
self._main_layer = tf.keras.models.Model([input_], [out])
self.register_variables(self._main_layer.variables)
def forward(self, input_dict, state, seq_lens):
def spy(pos, front_cam, task):
# TF runs this function in an isolated context, so we have to use
# redis to communicate back to our suite
ray.experimental.internal_kv._internal_kv_put(
"d_spy_in_{}".format(DictSpyModel.capture_index),
pickle.dumps((pos, front_cam, task)),
overwrite=True)
DictSpyModel.capture_index += 1
return np.array(0, dtype=np.int64)
spy_fn = tf1.py_func(
spy, [
input_dict["obs"]["sensors"]["position"],
input_dict["obs"]["sensors"]["front_cam"][0],
input_dict["obs"]["inner_state"]["job_status"]["task"]
],
tf.int64,
stateful=True)
with tf1.control_dependencies([spy_fn]):
output = self._main_layer(
[input_dict["obs"]["sensors"]["position"]])
return output, []
class TupleSpyModel(TFModelV2):
capture_index = 0
def __init__(self, obs_space, action_space, num_outputs, model_config,
name):
super().__init__(obs_space, action_space, None, model_config, name)
# Will only feed in 0th index of observation Tuple space.
input_ = tf.keras.layers.Input(
shape=self.obs_space.original_space[0].shape)
self.num_outputs = num_outputs or 64
out = tf.keras.layers.Dense(self.num_outputs)(input_)
self._main_layer = tf.keras.models.Model([input_], [out])
self.register_variables(self._main_layer.variables)
def forward(self, input_dict, state, seq_lens):
def spy(pos, cam, task):
# TF runs this function in an isolated context, so we have to use
# redis to communicate back to our suite
ray.experimental.internal_kv._internal_kv_put(
"t_spy_in_{}".format(TupleSpyModel.capture_index),
pickle.dumps((pos, cam, task)),
overwrite=True)
TupleSpyModel.capture_index += 1
return np.array(0, dtype=np.int64)
spy_fn = tf1.py_func(
spy, [
input_dict["obs"][0],
input_dict["obs"][1][0],
input_dict["obs"][2],
],
tf.int64,
stateful=True)
with tf1.control_dependencies([spy_fn]):
output = tf1.layers.dense(input_dict["obs"][0], self.num_outputs)
return output, []
class NestedSpacesTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
ray.init(num_cpus=5)
@classmethod
def tearDownClass(cls):
ray.shutdown()
def test_invalid_model(self):
ModelCatalog.register_custom_model("invalid", InvalidModel)
self.assertRaisesRegexp(
ValueError,
"Subclasses of TorchModelV2 must also inherit from nn.Module",
lambda: PGTrainer(
env="CartPole-v0",
config={
"model": {
"custom_model": "invalid",
},
"framework": "torch",
}))
def test_invalid_model2(self):
ModelCatalog.register_custom_model("invalid2", InvalidModel2)
self.assertRaisesRegexp(
ValueError, "Expected output shape of",
lambda: PGTrainer(
env="CartPole-v0", config={
"model": {
"custom_model": "invalid2",
},
"framework": "tf",
}))
def do_test_nested_dict(self, make_env, test_lstm=False):
ModelCatalog.register_custom_model("composite", DictSpyModel)
register_env("nested", make_env)
pg = PGTrainer(
env="nested",
config={
"num_workers": 0,
"rollout_fragment_length": 5,
"train_batch_size": 5,
"model": {
"custom_model": "composite",
"use_lstm": test_lstm,
},
"framework": "tf",
})
# Skip first passes as they came from the TorchPolicy loss
# initialization.
DictSpyModel.capture_index = 0
pg.train()
# Check that the model sees the correct reconstructed observations
for i in range(4):
seen = pickle.loads(
ray.experimental.internal_kv._internal_kv_get(
"d_spy_in_{}".format(i)))
pos_i = DICT_SAMPLES[i]["sensors"]["position"].tolist()
cam_i = DICT_SAMPLES[i]["sensors"]["front_cam"][0].tolist()
task_i = one_hot(
DICT_SAMPLES[i]["inner_state"]["job_status"]["task"], 5)
self.assertEqual(seen[0][0].tolist(), pos_i)
self.assertEqual(seen[1][0].tolist(), cam_i)
check(seen[2][0], task_i)
def do_test_nested_tuple(self, make_env):
ModelCatalog.register_custom_model("composite2", TupleSpyModel)
register_env("nested2", make_env)
pg = PGTrainer(
env="nested2",
config={
"num_workers": 0,
"rollout_fragment_length": 5,
"train_batch_size": 5,
"model": {
"custom_model": "composite2",
},
"framework": "tf",
})
# Skip first passes as they came from the TorchPolicy loss
# initialization.
TupleSpyModel.capture_index = 0
pg.train()
# Check that the model sees the correct reconstructed observations
for i in range(4):
seen = pickle.loads(
ray.experimental.internal_kv._internal_kv_get(
"t_spy_in_{}".format(i)))
pos_i = TUPLE_SAMPLES[i][0].tolist()
cam_i = TUPLE_SAMPLES[i][1][0].tolist()
task_i = one_hot(TUPLE_SAMPLES[i][2], 5)
self.assertEqual(seen[0][0].tolist(), pos_i)
self.assertEqual(seen[1][0].tolist(), cam_i)
check(seen[2][0], task_i)
def test_nested_dict_gym(self):
self.do_test_nested_dict(lambda _: NestedDictEnv())
def test_nested_dict_gym_lstm(self):
self.do_test_nested_dict(lambda _: NestedDictEnv(), test_lstm=True)
def test_nested_dict_vector(self):
self.do_test_nested_dict(
lambda _: VectorEnv.wrap(lambda i: NestedDictEnv()))
def test_nested_dict_serving(self):
self.do_test_nested_dict(lambda _: SimpleServing(NestedDictEnv()))
def test_nested_dict_async(self):
self.do_test_nested_dict(
lambda _: BaseEnv.to_base_env(NestedDictEnv()))
def test_nested_tuple_gym(self):
self.do_test_nested_tuple(lambda _: NestedTupleEnv())
def test_nested_tuple_vector(self):
self.do_test_nested_tuple(
lambda _: VectorEnv.wrap(lambda i: NestedTupleEnv()))
def test_nested_tuple_serving(self):
self.do_test_nested_tuple(lambda _: SimpleServing(NestedTupleEnv()))
def test_nested_tuple_async(self):
self.do_test_nested_tuple(
lambda _: BaseEnv.to_base_env(NestedTupleEnv()))
def test_multi_agent_complex_spaces(self):
ModelCatalog.register_custom_model("dict_spy", DictSpyModel)
ModelCatalog.register_custom_model("tuple_spy", TupleSpyModel)
register_env("nested_ma", lambda _: NestedMultiAgentEnv())
act_space = spaces.Discrete(2)
pg = PGTrainer(
env="nested_ma",
config={
"num_workers": 0,
"rollout_fragment_length": 5,
"train_batch_size": 5,
"multiagent": {
"policies": {
"tuple_policy": (
PGTFPolicy, TUPLE_SPACE, act_space,
{"model": {"custom_model": "tuple_spy"}}),
"dict_policy": (
PGTFPolicy, DICT_SPACE, act_space,
{"model": {"custom_model": "dict_spy"}}),
},
"policy_mapping_fn": lambda a: {
"tuple_agent": "tuple_policy",
"dict_agent": "dict_policy"}[a],
},
"framework": "tf",
})
# Skip first passes as they came from the TorchPolicy loss
# initialization.
TupleSpyModel.capture_index = DictSpyModel.capture_index = 0
pg.train()
for i in range(4):
seen = pickle.loads(
ray.experimental.internal_kv._internal_kv_get(
"d_spy_in_{}".format(i)))
pos_i = DICT_SAMPLES[i]["sensors"]["position"].tolist()
cam_i = DICT_SAMPLES[i]["sensors"]["front_cam"][0].tolist()
task_i = one_hot(
DICT_SAMPLES[i]["inner_state"]["job_status"]["task"], 5)
self.assertEqual(seen[0][0].tolist(), pos_i)
self.assertEqual(seen[1][0].tolist(), cam_i)
check(seen[2][0], task_i)
for i in range(4):
seen = pickle.loads(
ray.experimental.internal_kv._internal_kv_get(
"t_spy_in_{}".format(i)))
pos_i = TUPLE_SAMPLES[i][0].tolist()
cam_i = TUPLE_SAMPLES[i][1][0].tolist()
task_i = one_hot(TUPLE_SAMPLES[i][2], 5)
self.assertEqual(seen[0][0].tolist(), pos_i)
self.assertEqual(seen[1][0].tolist(), cam_i)
check(seen[2][0], task_i)
def test_rollout_dict_space(self):
register_env("nested", lambda _: NestedDictEnv())
agent = PGTrainer(env="nested", config={"framework": "tf"})
agent.train()
path = agent.save()
agent.stop()
# Test train works on restore
agent2 = PGTrainer(env="nested", config={"framework": "tf"})
agent2.restore(path)
agent2.train()
# Test rollout works on restore
rollout(agent2, "nested", 100)
def test_py_torch_model(self):
ModelCatalog.register_custom_model("composite", TorchSpyModel)
register_env("nested", lambda _: NestedDictEnv())
a2c = A2CTrainer(
env="nested",
config={
"num_workers": 0,
"rollout_fragment_length": 5,
"train_batch_size": 5,
"model": {
"custom_model": "composite",
},
"framework": "torch",
})
# Skip first passes as they came from the TorchPolicy loss
# initialization.
TorchSpyModel.capture_index = 0
a2c.train()
# Check that the model sees the correct reconstructed observations
for i in range(4):
seen = pickle.loads(
ray.experimental.internal_kv._internal_kv_get(
"torch_spy_in_{}".format(i)))
pos_i = DICT_SAMPLES[i]["sensors"]["position"].tolist()
cam_i = DICT_SAMPLES[i]["sensors"]["front_cam"][0].tolist()
task_i = one_hot(
DICT_SAMPLES[i]["inner_state"]["job_status"]["task"], 5)
# Only look at the last entry (-1) in `seen` as we reset (re-use)
# the ray-kv indices before training.
self.assertEqual(seen[0][-1].tolist(), pos_i)
self.assertEqual(seen[1][-1].tolist(), cam_i)
check(seen[2][-1], task_i)
# TODO(ekl) should probably also add a test for TF/eager
def test_torch_repeated(self):
ModelCatalog.register_custom_model("r1", TorchRepeatedSpyModel)
register_env("repeat", lambda _: RepeatedSpaceEnv())
a2c = A2CTrainer(
env="repeat",
config={
"num_workers": 0,
"rollout_fragment_length": 5,
"train_batch_size": 5,
"model": {
"custom_model": "r1",
},
"framework": "torch",
})
# Skip first passes as they came from the TorchPolicy loss
# initialization.
TorchRepeatedSpyModel.capture_index = 0
a2c.train()
# Check that the model sees the correct reconstructed observations
for i in range(4):
seen = pickle.loads(
ray.experimental.internal_kv._internal_kv_get(
"torch_rspy_in_{}".format(i)))
# Only look at the last entry (-1) in `seen` as we reset (re-use)
# the ray-kv indices before training.
self.assertEqual(
to_list(seen[:][-1]), to_list(REPEATED_SAMPLES[i]))
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))