ray/README.rst

215 lines
7.1 KiB
ReStructuredText
Raw Normal View History

2018-12-23 22:59:23 -08:00
.. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/ray_header_logo.png
.. image:: https://travis-ci.com/ray-project/ray.svg?branch=master
:target: https://travis-ci.com/ray-project/ray
.. image:: https://readthedocs.org/projects/ray/badge/?version=latest
:target: http://ray.readthedocs.io/en/latest/?badge=latest
|
2019-08-28 17:54:15 -07:00
**Ray is a fast and simple framework for building and running distributed applications.**
2019-08-28 17:54:15 -07:00
Ray is packaged with the following libraries for accelerating machine learning workloads:
- `Tune`_: Scalable Hyperparameter Tuning
- `RLlib`_: Scalable Reinforcement Learning
- `Distributed Training <https://ray.readthedocs.io/en/latest/distributed_training.html>`__
2019-08-28 17:54:15 -07:00
Install Ray with: ``pip install ray``. For nightly wheels, see the `Installation page <https://ray.readthedocs.io/en/latest/installation.html>`__.
2019-08-28 17:54:15 -07:00
Quick Start
-----------
2019-08-28 17:54:15 -07:00
Execute Python functions in parallel.
.. code-block:: python
import ray
ray.init()
@ray.remote
def f(x):
return x * x
futures = [f.remote(i) for i in range(4)]
print(ray.get(futures))
To use Ray's actor model:
.. code-block:: python
import ray
ray.init()
@ray.remote
class Counter():
def __init__(self):
self.n = 0
def increment(self):
self.n += 1
def read(self):
return self.n
counters = [Counter.remote() for i in range(4)]
[c.increment.remote() for c in counters]
futures = [c.read.remote() for c in counters]
print(ray.get(futures))
Ray programs can run on a single machine, and can also seamlessly scale to large clusters. To execute the above Ray script in the cloud, just download `this configuration file <https://github.com/ray-project/ray/blob/master/python/ray/autoscaler/aws/example-full.yaml>`__, and run:
``ray submit [CLUSTER.YAML] example.py --start``
Read more about `launching clusters <https://ray.readthedocs.io/en/latest/autoscaling.html>`_.
Tune Quick Start
----------------
.. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/tune-wide.png
`Tune`_ is a library for hyperparameter tuning at any scale.
- Launch a multi-node distributed hyperparameter sweep in less than 10 lines of code.
- Supports any deep learning framework, including PyTorch, TensorFlow, and Keras.
- Visualize results with `TensorBoard <https://www.tensorflow.org/get_started/summaries_and_tensorboard>`__.
- Choose among scalable SOTA algorithms such as `Population Based Training (PBT)`_, `Vizier's Median Stopping Rule`_, `HyperBand/ASHA`_.
- Tune integrates with many optimization libraries such as `Facebook Ax <http://ax.dev>`_, `HyperOpt <https://github.com/hyperopt/hyperopt>`_, and `Bayesian Optimization <https://github.com/fmfn/BayesianOptimization>`_ and enables you to scale them transparently.
To run this example, you will need to install the following:
.. code-block:: bash
$ pip install ray[tune] torch torchvision filelock
2019-08-28 17:54:15 -07:00
This example runs a parallel grid search to train a Convolutional Neural Network using PyTorch.
.. code-block:: python
import torch.optim as optim
from ray import tune
from ray.tune.examples.mnist_pytorch import (
get_data_loaders, ConvNet, train, test)
def train_mnist(config):
train_loader, test_loader = get_data_loaders()
model = ConvNet()
optimizer = optim.SGD(model.parameters(), lr=config["lr"])
for i in range(10):
train(model, optimizer, train_loader)
acc = test(model, test_loader)
tune.track.log(mean_accuracy=acc)
analysis = tune.run(
train_mnist, config={"lr": tune.grid_search([0.001, 0.01, 0.1])})
print("Best config: ", analysis.get_best_config(metric="mean_accuracy"))
# Get a dataframe for analyzing trial results.
df = analysis.dataframe()
If TensorBoard is installed, automatically visualize all trial results:
.. code-block:: bash
tensorboard --logdir ~/ray_results
.. _`Tune`: https://ray.readthedocs.io/en/latest/tune.html
.. _`Population Based Training (PBT)`: https://ray.readthedocs.io/en/latest/tune-schedulers.html#population-based-training-pbt
.. _`Vizier's Median Stopping Rule`: https://ray.readthedocs.io/en/latest/tune-schedulers.html#median-stopping-rule
.. _`HyperBand/ASHA`: https://ray.readthedocs.io/en/latest/tune-schedulers.html#asynchronous-hyperband
RLlib Quick Start
-----------------
.. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/rllib-wide.jpg
2019-08-28 17:54:15 -07:00
`RLlib`_ is an open-source library for reinforcement learning built on top of Ray that offers both high scalability and a unified API for a variety of applications.
.. code-block:: bash
pip install tensorflow # or tensorflow-gpu
pip install ray[rllib] # also recommended: ray[debug]
.. code-block:: python
import gym
from gym.spaces import Discrete, Box
from ray import tune
class SimpleCorridor(gym.Env):
def __init__(self, config):
self.end_pos = config["corridor_length"]
self.cur_pos = 0
self.action_space = Discrete(2)
self.observation_space = Box(0.0, self.end_pos, shape=(1, ))
2019-08-28 17:54:15 -07:00
def reset(self):
self.cur_pos = 0
return [self.cur_pos]
2019-08-28 17:54:15 -07:00
def step(self, action):
if action == 0 and self.cur_pos > 0:
self.cur_pos -= 1
elif action == 1:
self.cur_pos += 1
done = self.cur_pos >= self.end_pos
return [self.cur_pos], 1 if done else 0, done, {}
2019-08-28 17:54:15 -07:00
tune.run(
"PPO",
config={
"env": SimpleCorridor,
"num_workers": 4,
"env_config": {"corridor_length": 5}})
2019-08-28 17:54:15 -07:00
.. _`RLlib`: https://ray.readthedocs.io/en/latest/rllib.html
More Information
----------------
- `Documentation`_
- `Tutorial`_
- `Blog`_
2018-01-02 16:33:07 -08:00
- `Ray paper`_
- `Ray HotOS paper`_
2019-08-28 17:54:15 -07:00
- `RLlib paper`_
- `Tune paper`_
.. _`Documentation`: http://ray.readthedocs.io/en/latest/index.html
.. _`Tutorial`: https://github.com/ray-project/tutorial
.. _`Blog`: https://ray-project.github.io/
2018-01-02 16:33:07 -08:00
.. _`Ray paper`: https://arxiv.org/abs/1712.05889
.. _`Ray HotOS paper`: https://arxiv.org/abs/1703.03924
2019-08-28 17:54:15 -07:00
.. _`RLlib paper`: https://arxiv.org/abs/1712.09381
.. _`Tune paper`: https://arxiv.org/abs/1807.05118
Getting Involved
----------------
- `ray-dev@googlegroups.com`_: For discussions about development or any general
questions.
- `StackOverflow`_: For questions about how to use Ray.
- `GitHub Issues`_: For reporting bugs and feature requests.
- `Pull Requests`_: For submitting code contributions.
- `Meetup Group`_: Join our meetup group.
- `Community Slack`_: Join our Slack workspace.
- `Twitter`_: Follow updates on Twitter.
.. _`ray-dev@googlegroups.com`: https://groups.google.com/forum/#!forum/ray-dev
.. _`GitHub Issues`: https://github.com/ray-project/ray/issues
.. _`StackOverflow`: https://stackoverflow.com/questions/tagged/ray
.. _`Pull Requests`: https://github.com/ray-project/ray/pulls
.. _`Meetup Group`: https://www.meetup.com/Bay-Area-Ray-Meetup/
.. _`Community Slack`: https://forms.gle/9TSdDYUgxYs8SA9e8
.. _`Twitter`: https://twitter.com/raydistributed