ray/rllib/tuned_examples/sac/pendulum-sac-fake-gpus.yaml

39 lines
1,012 B
YAML
Raw Normal View History

pendulum-sac-fake-gpus:
[RLlib] Upgrade gym version to 0.21 and deprecate pendulum-v0. (#19535) * Fix QMix, SAC, and MADDPA too. * Unpin gym and deprecate pendulum v0 Many tests in rllib depended on pendulum v0, however in gym 0.21, pendulum v0 was deprecated in favor of pendulum v1. This may change reward thresholds, so will have to potentially rerun all of the pendulum v1 benchmarks, or use another environment in favor. The same applies to frozen lake v0 and frozen lake v1 Lastly, all of the RLlib tests and have been moved to python 3.7 * Add gym installation based on python version. Pin python<= 3.6 to gym 0.19 due to install issues with atari roms in gym 0.20 * Reformatting * Fixing tests * Move atari-py install conditional to req.txt * migrate to new ale install method * Fix QMix, SAC, and MADDPA too. * Unpin gym and deprecate pendulum v0 Many tests in rllib depended on pendulum v0, however in gym 0.21, pendulum v0 was deprecated in favor of pendulum v1. This may change reward thresholds, so will have to potentially rerun all of the pendulum v1 benchmarks, or use another environment in favor. The same applies to frozen lake v0 and frozen lake v1 Lastly, all of the RLlib tests and have been moved to python 3.7 * Add gym installation based on python version. Pin python<= 3.6 to gym 0.19 due to install issues with atari roms in gym 0.20 Move atari-py install conditional to req.txt migrate to new ale install method Make parametric_actions_cartpole return float32 actions/obs Adding type conversions if obs/actions don't match space Add utils to make elements match gym space dtypes Co-authored-by: Jun Gong <jungong@anyscale.com> Co-authored-by: sven1977 <svenmika1977@gmail.com>
2021-11-03 08:24:00 -07:00
env: Pendulum-v1
run: SAC
stop:
episode_reward_mean: -700
training_iteration: 200
config:
# Works for both torch and tf.
framework: tf
horizon: 200
soft_horizon: true
Q_model:
fcnet_activation: relu
fcnet_hiddens: [256, 256]
policy_model:
fcnet_activation: relu
fcnet_hiddens: [256, 256]
tau: 0.005
target_entropy: auto
n_step: 3
rollout_fragment_length: 1
prioritized_replay: true
target_network_update_freq: 1
timesteps_per_iteration: 1000
learning_starts: 256
num_workers: 0
metrics_smoothing_episodes: 5
# 1x batch size (despite 2 GPUs).
# train_batch_size: 256
optimization:
actor_learning_rate: 0.001
critic_learning_rate: 0.001
entropy_learning_rate: 0.001
# Fake 2 GPUs.
num_gpus: 2
_fake_gpus: true