ray/doc/source/ray-overview/doc_test/ray_tune.py

31 lines
835 B
Python
Raw Normal View History

from ray import tune
from ray.air import session
def objective(step, alpha, beta):
return (0.1 + alpha * step / 100) ** (-1) + beta * 0.1
def training_function(config):
# Hyperparameters
alpha, beta = config["alpha"], config["beta"]
for step in range(10):
# Iterative training function - can be any arbitrary training procedure.
intermediate_score = objective(step, alpha, beta)
# Feed the score back back to Tune.
session.report({"mean_loss": intermediate_score})
analysis = tune.run(
training_function,
config={
"alpha": tune.grid_search([0.001, 0.01, 0.1]),
"beta": tune.choice([1, 2, 3]),
},
)
print("Best config: ", analysis.get_best_config(metric="mean_loss", mode="min"))
# Get a dataframe for analyzing trial results.
df = analysis.results_df