ray/rllib/examples/centralized_critic.py

245 lines
9 KiB
Python
Raw Normal View History

"""An example of customizing PPO to leverage a centralized critic.
Here the model and policy are hard-coded to implement a centralized critic
for TwoStepGame, but you can adapt this for your own use cases.
Compared to simply running `twostep_game.py --run=PPO`, this centralized
critic version reaches vf_explained_variance=1.0 more stably since it takes
into account the opponent actions as well as the policy's. Note that this is
also using two independent policies instead of weight-sharing with one.
See also: centralized_critic_2.py for a simpler approach that instead
modifies the environment.
"""
import argparse
import numpy as np
from gym.spaces import Discrete
import ray
from ray import tune
from ray.rllib.agents.ppo.ppo import PPOTrainer
from ray.rllib.agents.ppo.ppo_tf_policy import PPOTFPolicy, KLCoeffMixin, \
PPOLoss as TFLoss
from ray.rllib.agents.ppo.ppo_torch_policy import PPOTorchPolicy, \
KLCoeffMixin as TorchKLCoeffMixin, PPOLoss as TorchLoss
from ray.rllib.evaluation.postprocessing import compute_advantages, \
Postprocessing
from ray.rllib.examples.env.two_step_game import TwoStepGame
from ray.rllib.examples.models.centralized_critic_models import \
CentralizedCriticModel, TorchCentralizedCriticModel
from ray.rllib.models import ModelCatalog
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.policy.tf_policy import LearningRateSchedule, \
EntropyCoeffSchedule
from ray.rllib.policy.torch_policy import LearningRateSchedule as TorchLR, \
EntropyCoeffSchedule as TorchEntropyCoeffSchedule
from ray.rllib.utils.framework import try_import_tf, try_import_torch
from ray.rllib.utils.test_utils import check_learning_achieved
from ray.rllib.utils.tf_ops import explained_variance, make_tf_callable
from ray.rllib.utils.torch_ops import convert_to_torch_tensor
tf1, tf, tfv = try_import_tf()
torch, nn = try_import_torch()
OPPONENT_OBS = "opponent_obs"
OPPONENT_ACTION = "opponent_action"
parser = argparse.ArgumentParser()
parser.add_argument("--torch", action="store_true")
parser.add_argument("--as-test", action="store_true")
parser.add_argument("--stop-iters", type=int, default=100)
parser.add_argument("--stop-timesteps", type=int, default=100000)
parser.add_argument("--stop-reward", type=float, default=7.99)
class CentralizedValueMixin:
"""Add method to evaluate the central value function from the model."""
def __init__(self):
if self.config["framework"] != "torch":
self.compute_central_vf = make_tf_callable(self.get_session())(
self.model.central_value_function)
else:
self.compute_central_vf = self.model.central_value_function
# Grabs the opponent obs/act and includes it in the experience train_batch,
# and computes GAE using the central vf predictions.
def centralized_critic_postprocessing(policy,
sample_batch,
other_agent_batches=None,
episode=None):
pytorch = policy.config["framework"] == "torch"
if (pytorch and hasattr(policy, "compute_central_vf")) or \
(not pytorch and policy.loss_initialized()):
assert other_agent_batches is not None
[(_, opponent_batch)] = list(other_agent_batches.values())
# also record the opponent obs and actions in the trajectory
sample_batch[OPPONENT_OBS] = opponent_batch[SampleBatch.CUR_OBS]
sample_batch[OPPONENT_ACTION] = opponent_batch[SampleBatch.ACTIONS]
# overwrite default VF prediction with the central VF
if args.torch:
sample_batch[SampleBatch.VF_PREDS] = policy.compute_central_vf(
convert_to_torch_tensor(sample_batch[SampleBatch.CUR_OBS]),
convert_to_torch_tensor(sample_batch[OPPONENT_OBS]),
convert_to_torch_tensor(sample_batch[OPPONENT_ACTION])). \
detach().numpy()
else:
sample_batch[SampleBatch.VF_PREDS] = policy.compute_central_vf(
sample_batch[SampleBatch.CUR_OBS], sample_batch[OPPONENT_OBS],
sample_batch[OPPONENT_ACTION])
else:
# Policy hasn't been initialized yet, use zeros.
sample_batch[OPPONENT_OBS] = np.zeros_like(
sample_batch[SampleBatch.CUR_OBS])
sample_batch[OPPONENT_ACTION] = np.zeros_like(
sample_batch[SampleBatch.ACTIONS])
sample_batch[SampleBatch.VF_PREDS] = np.zeros_like(
sample_batch[SampleBatch.REWARDS], dtype=np.float32)
completed = sample_batch["dones"][-1]
if completed:
last_r = 0.0
else:
last_r = sample_batch[SampleBatch.VF_PREDS][-1]
train_batch = compute_advantages(
sample_batch,
last_r,
policy.config["gamma"],
policy.config["lambda"],
use_gae=policy.config["use_gae"])
return train_batch
# Copied from PPO but optimizing the central value function
def loss_with_central_critic(policy, model, dist_class, train_batch):
CentralizedValueMixin.__init__(policy)
logits, state = model.from_batch(train_batch)
action_dist = dist_class(logits, model)
policy.central_value_out = policy.model.central_value_function(
train_batch[SampleBatch.CUR_OBS], train_batch[OPPONENT_OBS],
train_batch[OPPONENT_ACTION])
func = TFLoss if not policy.config["framework"] == "torch" else TorchLoss
adv = tf.ones_like(train_batch[Postprocessing.ADVANTAGES], dtype=tf.bool) \
if policy.config["framework"] != "torch" else \
torch.ones_like(train_batch[Postprocessing.ADVANTAGES],
dtype=torch.bool)
policy.loss_obj = func(
dist_class,
model,
train_batch[Postprocessing.VALUE_TARGETS],
train_batch[Postprocessing.ADVANTAGES],
train_batch[SampleBatch.ACTIONS],
train_batch[SampleBatch.ACTION_DIST_INPUTS],
train_batch[SampleBatch.ACTION_LOGP],
train_batch[SampleBatch.VF_PREDS],
action_dist,
policy.central_value_out,
policy.kl_coeff,
adv,
entropy_coeff=policy.entropy_coeff,
clip_param=policy.config["clip_param"],
vf_clip_param=policy.config["vf_clip_param"],
vf_loss_coeff=policy.config["vf_loss_coeff"],
use_gae=policy.config["use_gae"])
return policy.loss_obj.loss
def setup_mixins(policy, obs_space, action_space, config):
# copied from PPO
KLCoeffMixin.__init__(policy, config)
EntropyCoeffSchedule.__init__(policy, config["entropy_coeff"],
config["entropy_coeff_schedule"])
LearningRateSchedule.__init__(policy, config["lr"], config["lr_schedule"])
def central_vf_stats(policy, train_batch, grads):
# Report the explained variance of the central value function.
return {
"vf_explained_var": explained_variance(
train_batch[Postprocessing.VALUE_TARGETS],
policy.central_value_out),
}
CCPPOTFPolicy = PPOTFPolicy.with_updates(
name="CCPPOTFPolicy",
postprocess_fn=centralized_critic_postprocessing,
loss_fn=loss_with_central_critic,
before_loss_init=setup_mixins,
grad_stats_fn=central_vf_stats,
mixins=[
LearningRateSchedule, EntropyCoeffSchedule, KLCoeffMixin,
CentralizedValueMixin
])
CCPPOTorchPolicy = PPOTorchPolicy.with_updates(
name="CCPPOTorchPolicy",
postprocess_fn=centralized_critic_postprocessing,
loss_fn=loss_with_central_critic,
before_init=setup_mixins,
mixins=[
TorchLR, TorchEntropyCoeffSchedule, TorchKLCoeffMixin,
CentralizedValueMixin
])
def get_policy_class(config):
return CCPPOTorchPolicy if config["framework"] == "torch" \
else CCPPOTFPolicy
CCTrainer = PPOTrainer.with_updates(
name="CCPPOTrainer",
default_policy=CCPPOTFPolicy,
get_policy_class=get_policy_class,
)
if __name__ == "__main__":
ray.init(local_mode=True)
args = parser.parse_args()
ModelCatalog.register_custom_model(
"cc_model", TorchCentralizedCriticModel
if args.torch else CentralizedCriticModel)
config = {
"env": TwoStepGame,
"batch_mode": "complete_episodes",
"num_workers": 0,
"multiagent": {
"policies": {
"pol1": (None, Discrete(6), TwoStepGame.action_space, {
"framework": "torch" if args.torch else "tf",
}),
"pol2": (None, Discrete(6), TwoStepGame.action_space, {
"framework": "torch" if args.torch else "tf",
}),
},
"policy_mapping_fn": lambda x: "pol1" if x == 0 else "pol2",
},
"model": {
"custom_model": "cc_model",
},
"framework": "torch" if args.torch else "tf",
}
stop = {
"training_iteration": args.stop_iters,
"timesteps_total": args.stop_timesteps,
"episode_reward_mean": args.stop_reward,
}
results = tune.run(CCTrainer, config=config, stop=stop)
if args.as_test:
check_learning_achieved(results, args.stop_reward)