2019-06-01 16:13:21 +08:00
|
|
|
import argparse
|
|
|
|
|
|
|
|
import ray
|
|
|
|
from ray import tune
|
|
|
|
from ray.rllib.agents.trainer_template import build_trainer
|
|
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
|
|
from ray.rllib.policy.torch_policy_template import build_torch_policy
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
2020-05-12 08:23:10 +02:00
|
|
|
parser.add_argument("--stop-iters", type=int, default=200)
|
2020-02-15 23:50:44 +01:00
|
|
|
parser.add_argument("--num-cpus", type=int, default=0)
|
2019-06-01 16:13:21 +08:00
|
|
|
|
|
|
|
|
2019-08-23 02:21:11 -04:00
|
|
|
def policy_gradient_loss(policy, model, dist_class, train_batch):
|
|
|
|
logits, _ = model({SampleBatch.CUR_OBS: train_batch[SampleBatch.CUR_OBS]})
|
|
|
|
action_dist = dist_class(logits, model)
|
|
|
|
log_probs = action_dist.logp(train_batch[SampleBatch.ACTIONS])
|
|
|
|
return -train_batch[SampleBatch.REWARDS].dot(log_probs)
|
2019-06-01 16:13:21 +08:00
|
|
|
|
|
|
|
|
|
|
|
# <class 'ray.rllib.policy.torch_policy_template.MyTorchPolicy'>
|
|
|
|
MyTorchPolicy = build_torch_policy(
|
|
|
|
name="MyTorchPolicy", loss_fn=policy_gradient_loss)
|
|
|
|
|
|
|
|
# <class 'ray.rllib.agents.trainer_template.MyCustomTrainer'>
|
|
|
|
MyTrainer = build_trainer(
|
|
|
|
name="MyCustomTrainer",
|
|
|
|
default_policy=MyTorchPolicy,
|
|
|
|
)
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
args = parser.parse_args()
|
2020-02-15 23:50:44 +01:00
|
|
|
ray.init(num_cpus=args.num_cpus or None)
|
2019-06-01 16:13:21 +08:00
|
|
|
tune.run(
|
|
|
|
MyTrainer,
|
2020-05-12 08:23:10 +02:00
|
|
|
stop={"training_iteration": args.stop_iters},
|
2019-06-01 16:13:21 +08:00
|
|
|
config={
|
|
|
|
"env": "CartPole-v0",
|
|
|
|
"num_workers": 2,
|
2020-03-30 23:03:29 +02:00
|
|
|
"use_pytorch": True
|
2019-06-01 16:13:21 +08:00
|
|
|
})
|