2020-04-23 09:09:22 +02:00
|
|
|
from gym.spaces import Tuple, Dict
|
|
|
|
import numpy as np
|
2021-04-16 09:16:24 +02:00
|
|
|
import tree # pip install dm_tree
|
2020-04-23 09:09:22 +02:00
|
|
|
|
|
|
|
|
|
|
|
def flatten_space(space):
|
|
|
|
"""Flattens a gym.Space into its primitive components.
|
|
|
|
|
|
|
|
Primitive components are any non Tuple/Dict spaces.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
space(gym.Space): The gym.Space to flatten. This may be any
|
|
|
|
supported type (including nested Tuples and Dicts).
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List[gym.Space]: The flattened list of primitive Spaces. This list
|
|
|
|
does not contain Tuples or Dicts anymore.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def _helper_flatten(space_, l):
|
2020-06-17 04:55:52 -04:00
|
|
|
from ray.rllib.utils.spaces.flexdict import FlexDict
|
2020-04-23 09:09:22 +02:00
|
|
|
if isinstance(space_, Tuple):
|
|
|
|
for s in space_:
|
|
|
|
_helper_flatten(s, l)
|
2020-06-17 04:55:52 -04:00
|
|
|
elif isinstance(space_, (Dict, FlexDict)):
|
2020-04-23 09:09:22 +02:00
|
|
|
for k in space_.spaces:
|
|
|
|
_helper_flatten(space_[k], l)
|
|
|
|
else:
|
|
|
|
l.append(space_)
|
|
|
|
|
|
|
|
ret = []
|
|
|
|
_helper_flatten(space, ret)
|
|
|
|
return ret
|
|
|
|
|
|
|
|
|
|
|
|
def get_base_struct_from_space(space):
|
|
|
|
"""Returns a Tuple/Dict Space as native (equally structured) py tuple/dict.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
space (gym.Space): The Space to get the python struct for.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Union[dict,tuple,gym.Space]: The struct equivalent to the given Space.
|
|
|
|
Note that the returned struct still contains all original
|
|
|
|
"primitive" Spaces (e.g. Box, Discrete).
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
>>> get_base_struct_from_space(Dict({
|
|
|
|
>>> "a": Box(),
|
|
|
|
>>> "b": Tuple([Discrete(2), Discrete(3)])
|
|
|
|
>>> }))
|
|
|
|
>>> # Will return: dict(a=Box(), b=tuple(Discrete(2), Discrete(3)))
|
|
|
|
"""
|
|
|
|
|
|
|
|
def _helper_struct(space_):
|
|
|
|
if isinstance(space_, Tuple):
|
|
|
|
return tuple(_helper_struct(s) for s in space_)
|
|
|
|
elif isinstance(space_, Dict):
|
|
|
|
return {k: _helper_struct(space_[k]) for k in space_.spaces}
|
|
|
|
else:
|
|
|
|
return space_
|
|
|
|
|
|
|
|
return _helper_struct(space)
|
|
|
|
|
|
|
|
|
|
|
|
def flatten_to_single_ndarray(input_):
|
|
|
|
"""Returns a single np.ndarray given a list/tuple of np.ndarrays.
|
|
|
|
|
|
|
|
Args:
|
2020-08-19 17:49:50 +02:00
|
|
|
input_ (Union[List[np.ndarray], np.ndarray]): The list of ndarrays or
|
2020-04-23 09:09:22 +02:00
|
|
|
a single ndarray.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
np.ndarray: The result after concatenating all single arrays in input_.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
>>> flatten_to_single_ndarray([
|
|
|
|
>>> np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]),
|
|
|
|
>>> np.array([7, 8, 9]),
|
|
|
|
>>> ])
|
|
|
|
>>> # Will return:
|
|
|
|
>>> # np.array([
|
|
|
|
>>> # 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0
|
|
|
|
>>> # ])
|
|
|
|
"""
|
2020-04-28 14:59:16 +02:00
|
|
|
# Concatenate complex inputs.
|
|
|
|
if isinstance(input_, (list, tuple, dict)):
|
2020-04-23 09:09:22 +02:00
|
|
|
expanded = []
|
2020-04-28 14:59:16 +02:00
|
|
|
for in_ in tree.flatten(input_):
|
2020-04-23 09:09:22 +02:00
|
|
|
expanded.append(np.reshape(in_, [-1]))
|
|
|
|
input_ = np.concatenate(expanded, axis=0).flatten()
|
|
|
|
return input_
|
2020-05-20 22:29:08 +02:00
|
|
|
|
|
|
|
|
|
|
|
def unbatch(batches_struct):
|
|
|
|
"""Converts input from (nested) struct of batches to batch of structs.
|
|
|
|
|
|
|
|
Input: Struct of different batches (each batch has size=3):
|
|
|
|
{"a": [1, 2, 3], "b": ([4, 5, 6], [7.0, 8.0, 9.0])}
|
|
|
|
Output: Batch (list) of structs (each of these structs representing a
|
|
|
|
single action):
|
|
|
|
[
|
|
|
|
{"a": 1, "b": (4, 7.0)}, <- action 1
|
|
|
|
{"a": 2, "b": (5, 8.0)}, <- action 2
|
|
|
|
{"a": 3, "b": (6, 9.0)}, <- action 3
|
|
|
|
]
|
|
|
|
|
|
|
|
Args:
|
|
|
|
batches_struct (any): The struct of component batches. Each leaf item
|
|
|
|
in this struct represents the batch for a single component
|
|
|
|
(in case struct is tuple/dict).
|
|
|
|
Alternatively, `batches_struct` may also simply be a batch of
|
|
|
|
primitives (non tuple/dict).
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List[struct[components]]: The list of rows. Each item
|
|
|
|
in the returned list represents a single (maybe complex) struct.
|
|
|
|
"""
|
|
|
|
flat_batches = tree.flatten(batches_struct)
|
|
|
|
|
|
|
|
out = []
|
|
|
|
for batch_pos in range(len(flat_batches[0])):
|
|
|
|
out.append(
|
|
|
|
tree.unflatten_as(
|
|
|
|
batches_struct,
|
|
|
|
[flat_batches[i][batch_pos]
|
|
|
|
for i in range(len(flat_batches))]))
|
|
|
|
return out
|