ray/rllib/tests/test_supported_multi_agent.py

105 lines
3.1 KiB
Python
Raw Normal View History

import unittest
import ray
from ray.rllib.agents.registry import get_agent_class
from ray.rllib.examples.env.multi_agent import MultiAgentCartPole, \
MultiAgentMountainCar
from ray.rllib.utils.test_utils import framework_iterator
from ray.tune import register_env
def check_support_multiagent(alg, config):
register_env("multi_agent_mountaincar",
lambda _: MultiAgentMountainCar({"num_agents": 2}))
register_env("multi_agent_cartpole",
lambda _: MultiAgentCartPole({"num_agents": 2}))
config["log_level"] = "ERROR"
for _ in framework_iterator(config, frameworks=("tf", "torch")):
if alg in ["DDPG", "APEX_DDPG", "SAC"]:
a = get_agent_class(alg)(
config=config, env="multi_agent_mountaincar")
else:
a = get_agent_class(alg)(config=config, env="multi_agent_cartpole")
try:
a.train()
finally:
a.stop()
class ModelSupportedSpaces(unittest.TestCase):
def setUp(self):
ray.init(num_cpus=4, ignore_reinit_error=True)
def tearDown(self):
ray.shutdown()
def test_a3c_multiagent(self):
check_support_multiagent("A3C", {
"num_workers": 1,
"optimizer": {
"grads_per_step": 1
}
})
def test_apex_multiagent(self):
check_support_multiagent(
"APEX", {
"num_workers": 2,
"timesteps_per_iteration": 1000,
"num_gpus": 0,
"min_iter_time_s": 1,
"learning_starts": 1000,
"target_network_update_freq": 100,
})
def test_apex_ddpg_multiagent(self):
check_support_multiagent(
"APEX_DDPG", {
"num_workers": 2,
"timesteps_per_iteration": 1000,
"num_gpus": 0,
"min_iter_time_s": 1,
"learning_starts": 1000,
"target_network_update_freq": 100,
"use_state_preprocessor": True,
})
def test_ddpg_multiagent(self):
check_support_multiagent(
"DDPG", {
"timesteps_per_iteration": 1,
"use_state_preprocessor": True,
"learning_starts": 500,
})
def test_dqn_multiagent(self):
check_support_multiagent("DQN", {"timesteps_per_iteration": 1})
def test_impala_multiagent(self):
check_support_multiagent("IMPALA", {"num_gpus": 0})
def test_pg_multiagent(self):
check_support_multiagent("PG", {"num_workers": 1, "optimizer": {}})
def test_ppo_multiagent(self):
check_support_multiagent(
"PPO", {
"num_workers": 1,
"num_sgd_iter": 1,
"train_batch_size": 10,
"rollout_fragment_length": 10,
"sgd_minibatch_size": 1,
})
def test_sac_multiagent(self):
check_support_multiagent("SAC", {
"num_workers": 0,
"normalize_actions": False,
})
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))