ray/rllib/agents/dqn/r2d2.py

151 lines
5.8 KiB
Python
Raw Normal View History

2021-02-25 12:18:11 +01:00
"""
Recurrent Experience Replay in Distributed Reinforcement Learning (R2D2)
========================================================================
[1] Recurrent Experience Replay in Distributed Reinforcement Learning -
S Kapturowski, G Ostrovski, J Quan, R Munos, W Dabney - 2019, DeepMind
This file defines the distributed Trainer class for the R2D2
algorithm. See `r2d2_[tf|torch]_policy.py` for the definition of the policies.
Detailed documentation:
https://docs.ray.io/en/master/rllib-algorithms.html#recurrent-replay-distributed-dqn-r2d2
""" # noqa: E501
import logging
from typing import List, Optional, Type
from ray.rllib.agents import dqn
from ray.rllib.agents.dqn.r2d2_tf_policy import R2D2TFPolicy
from ray.rllib.agents.dqn.r2d2_torch_policy import R2D2TorchPolicy
from ray.rllib.policy.policy import Policy
from ray.rllib.utils.typing import TrainerConfigDict
logger = logging.getLogger(__name__)
# yapf: disable
# __sphinx_doc_begin__
DEFAULT_CONFIG = dqn.DQNTrainer.merge_trainer_configs(
dqn.DEFAULT_CONFIG, # See keys in impala.py, which are also supported.
{
# Learning rate for adam optimizer
"lr": 1e-4,
# Discount factor.
"gamma": 0.997,
# Train batch size (in number of single timesteps).
"train_batch_size": 64 * 20,
# Adam epsilon hyper parameter
"adam_epsilon": 1e-3,
# Run in parallel by default.
"num_workers": 2,
# Batch mode must be complete_episodes.
"batch_mode": "complete_episodes",
# R2D2 does not suport n-step > 1 yet!
"n_step": 1,
# If True, assume a zero-initialized state input (no matter where in
# the episode the sequence is located).
# If False, store the initial states along with each SampleBatch, use
# it (as initial state when running through the network for training),
# and update that initial state during training (from the internal
# state outputs of the immediately preceding sequence).
"zero_init_states": True,
# If > 0, use the `burn_in` first steps of each replay-sampled sequence
# (starting either from all 0.0-values if `zero_init_state=True` or
# from the already stored values) to calculate an even more accurate
# initial states for the actual sequence (starting after this burn-in
# window). In the burn-in case, the actual length of the sequence
# used for loss calculation is `n - burn_in` time steps
# (n=LSTMs/attention nets max_seq_len).
"burn_in": 0,
# Whether to use the h-function from the paper [1] to scale target
# values in the R2D2-loss function:
# h(x) = sign(x)(􏰅|x| + 1 1) + εx
"use_h_function": True,
# The epsilon parameter from the R2D2 loss function (only used
# if `use_h_function`=True.
"h_function_epsilon": 1e-3,
# === Hyperparameters from the paper [1] ===
# Size of the replay buffer (in sequences, not timesteps).
"buffer_size": 100000,
# If True prioritized replay buffer will be used.
# Note: Not supported yet by R2D2!
"prioritized_replay": False,
# Set automatically: The number of contiguous environment steps to
# replay at once. Will be calculated via
# model->max_seq_len + burn_in.
# Do not set this to any valid value!
"replay_sequence_length": -1,
# Update the target network every `target_network_update_freq` steps.
"target_network_update_freq": 2500,
},
_allow_unknown_configs=True,
)
# __sphinx_doc_end__
# yapf: enable
def validate_config(config: TrainerConfigDict) -> None:
"""Checks and updates the config based on settings.
Rewrites rollout_fragment_length to take into account n_step truncation.
"""
if config["replay_sequence_length"] != -1:
raise ValueError(
"`replay_sequence_length` is calculated automatically to be "
"model->max_seq_len + burn_in!")
# Add the `burn_in` to the Model's max_seq_len.
# Set the replay sequence length to the max_seq_len of the model.
config["replay_sequence_length"] = \
config["burn_in"] + config["model"]["max_seq_len"]
if config.get("prioritized_replay"):
raise ValueError("Prioritized replay is not supported for R2D2 yet!")
if config.get("batch_mode") != "complete_episodes":
raise ValueError("`batch_mode` must be 'complete_episodes'!")
if config["n_step"] > 1:
raise ValueError("`n_step` > 1 not yet supported by R2D2!")
def calculate_rr_weights(config: TrainerConfigDict) -> List[float]:
"""Calculate the round robin weights for the rollout and train steps"""
if not config["training_intensity"]:
return [1, 1]
# e.g., 32 / 4 -> native ratio of 8.0
native_ratio = (
config["train_batch_size"] / config["rollout_fragment_length"])
# Training intensity is specified in terms of
# (steps_replayed / steps_sampled), so adjust for the native ratio.
weights = [1, config["training_intensity"] / native_ratio]
return weights
def get_policy_class(config: TrainerConfigDict) -> Optional[Type[Policy]]:
"""Policy class picker function. Class is chosen based on DL-framework.
Args:
config (TrainerConfigDict): The trainer's configuration dict.
Returns:
Optional[Type[Policy]]: The Policy class to use with R2D2Trainer.
If None, use `default_policy` provided in build_trainer().
"""
if config["framework"] == "torch":
return R2D2TorchPolicy
# Build an R2D2 trainer, which uses the framework specific Policy
# determined in `get_policy_class()` above.
R2D2Trainer = dqn.DQNTrainer.with_updates(
name="R2D2",
default_policy=R2D2TFPolicy,
get_policy_class=get_policy_class,
2021-02-25 12:18:11 +01:00
default_config=DEFAULT_CONFIG,
validate_config=validate_config,
)