ray/rllib/tuned_examples/cql/pendulum-cql.yaml

50 lines
1.5 KiB
YAML
Raw Normal View History

# Given a SAC-generated offline file generated via:
# rllib train -f tuned_examples/sac/pendulum-sac.yaml --no-ray-ui
# Pendulum CQL can attain ~ -300 reward in 10k from that file.
pendulum-cql:
env: Pendulum-v0
run: CQL
stop:
episode_reward_mean: -300
#timesteps_total: 10000
config:
# Works for both torch and tf.
framework: tf
# Use one or more offline files or "input: sampler" for online learning.
input: ["/your/json/file/here"]
horizon: 200
soft_horizon: true
Q_model:
fcnet_activation: relu
fcnet_hiddens: [256, 256]
policy_model:
fcnet_activation: relu
fcnet_hiddens: [256, 256]
tau: 0.005
target_entropy: auto
no_done_at_end: true
n_step: 3
rollout_fragment_length: 1
prioritized_replay: false
train_batch_size: 256
target_network_update_freq: 1
timesteps_per_iteration: 1000
learning_starts: 256
optimization:
actor_learning_rate: 0.0003
critic_learning_rate: 0.0003
entropy_learning_rate: 0.0003
num_workers: 0
num_gpus: 1
clip_actions: False
normalize_actions: true
evaluation_num_workers: 1
evaluation_interval: 1
metrics_smoothing_episodes: 5
bc_iters: 0
# Evaluate in an actual environment.
evaluation_config:
input: sampler
explore: False