ray/doc/source/tune/doc_code/key_concepts.py

140 lines
4.1 KiB
Python
Raw Normal View History

# flake8: noqa
# __function_api_start__
from ray import tune
def objective(x, a, b): # Define an objective function.
return a * (x ** 0.5) + b
def trainable(config): # Pass a "config" dictionary into your trainable.
for x in range(20): # "Train" for 20 iterations and compute intermediate scores.
score = objective(x, config["a"], config["b"])
tune.report(score=score) # Send the score to Tune.
# __function_api_end__
# __class_api_start__
from ray import tune
def objective(x, a, b):
return a * (x ** 2) + b
class Trainable(tune.Trainable):
def setup(self, config):
# config (dict): A dict of hyperparameters
self.x = 0
self.a = config["a"]
self.b = config["b"]
def step(self): # This is called iteratively.
score = objective(self.x, self.a, self.b)
self.x += 1
return {"score": score}
# __class_api_end__
# TODO: this example does not work as advertised. Errors out.
def save_checkpoint(self, checkpoint_dir):
pass
def load_checkpoint(self, checkpoint_dir):
pass
# __run_tunable_start__
# Pass in a Trainable class or function, along with a search space "config".
tune.run(trainable, config={"a": 2, "b": 4})
# __run_tunable_end__
# __run_tunable_samples_start__
tune.run(trainable, config={"a": 2, "b": 4}, num_samples=10)
# __run_tunable_samples_end__
# __search_space_start__
space = {"a": tune.uniform(0, 1), "b": tune.uniform(0, 1)}
tune.run(trainable, config=space, num_samples=10)
# __search_space_end__
# __config_start__
config = {
"uniform": tune.uniform(-5, -1), # Uniform float between -5 and -1
"quniform": tune.quniform(3.2, 5.4, 0.2), # Round to increments of 0.2
"loguniform": tune.loguniform(1e-4, 1e-1), # Uniform float in log space
"qloguniform": tune.qloguniform(1e-4, 1e-1, 5e-5), # Round to increments of 0.00005
"randn": tune.randn(10, 2), # Normal distribution with mean 10 and sd 2
"qrandn": tune.qrandn(10, 2, 0.2), # Round to increments of 0.2
"randint": tune.randint(-9, 15), # Random integer between -9 and 15
"qrandint": tune.qrandint(-21, 12, 3), # Round to increments of 3 (includes 12)
"lograndint": tune.lograndint(1, 10), # Random integer in log space
"qlograndint": tune.qlograndint(1, 10, 2), # Round to increments of 2
"choice": tune.choice(["a", "b", "c"]), # Choose one of these options uniformly
"func": tune.sample_from(
lambda spec: spec.config.uniform * 0.01
), # Depends on other value
"grid": tune.grid_search([32, 64, 128]), # Search over all these values
}
# __config_end__
# __bayes_start__
from ray.tune.suggest.bayesopt import BayesOptSearch
# Define the search space
search_space = {"a": tune.uniform(0, 1), "b": tune.uniform(0, 20)}
algo = BayesOptSearch(random_search_steps=4)
tune.run(
trainable,
config=search_space,
metric="score",
mode="min",
search_alg=algo,
stop={"training_iteration": 20},
)
# __bayes_end__
# __hyperband_start__
from ray.tune.schedulers import HyperBandScheduler
# Create HyperBand scheduler and minimize the score
hyperband = HyperBandScheduler(metric="score", mode="max")
config = {"a": tune.uniform(0, 1), "b": tune.uniform(0, 1)}
tune.run(trainable, config=config, num_samples=20, scheduler=hyperband)
# __hyperband_end__
# __analysis_start__
analysis = tune.run(
trainable,
config=config,
metric="score",
mode="min",
search_alg=BayesOptSearch(random_search_steps=4),
stop={"training_iteration": 20},
)
best_trial = analysis.best_trial # Get best trial
best_config = analysis.best_config # Get best trial's hyperparameters
best_logdir = analysis.best_logdir # Get best trial's logdir
best_checkpoint = analysis.best_checkpoint # Get best trial's best checkpoint
best_result = analysis.best_result # Get best trial's last results
best_result_df = analysis.best_result_df # Get best result as pandas dataframe
# __analysis_end__
# __results_start__
# Get a dataframe with the last results for each trial
df_results = analysis.results_df
# Get a dataframe of results for a specific score or mode
df = analysis.dataframe(metric="score", mode="max")
# __results_end__