2021-09-19 20:14:51 -07:00
Profiling (internal)
====================
2018-01-25 21:40:52 -08:00
2020-11-19 16:02:11 -08:00
This document details, for Ray developers, how to analyze Ray performance.
Getting a stack trace of Ray C++ processes
2020-11-19 22:13:23 -07:00
------------------------------------------
2020-11-19 16:02:11 -08:00
You can use the following GDB command to view the current stack trace of any
running Ray process (e.g., raylet). This can be useful for debugging 100% CPU
utilization or infinite loops (simply run the command a few times to see what
the process is stuck on).
.. code-block :: shell
sudo gdb -batch -ex "thread apply all bt" -p <pid>
2021-01-12 20:35:38 -08:00
2020-11-19 16:02:11 -08:00
Note that you can find the pid of the raylet with `` pgrep raylet `` .
2018-01-25 21:40:52 -08:00
Installation
------------
These instructions are for Ubuntu only. Attempts to get `` pprof `` to correctly
symbolize on Mac OS have failed.
.. code-block :: bash
sudo apt-get install google-perftools libgoogle-perftools-dev
Launching the to-profile binary
-------------------------------
2018-11-13 14:48:33 -08:00
If you want to launch Ray in profiling mode, define the following variables:
2018-01-25 21:40:52 -08:00
.. code-block :: bash
2018-11-13 14:48:33 -08:00
export RAYLET_PERFTOOLS_PATH=/usr/lib/x86_64-linux-gnu/libprofiler.so
export RAYLET_PERFTOOLS_LOGFILE=/tmp/pprof.out
2018-01-25 21:40:52 -08:00
The file `` /tmp/pprof.out `` will be empty until you let the binary run the
2018-11-13 14:48:33 -08:00
target workload for a while and then `` kill `` it via `` ray stop `` or by
letting the driver exit.
2018-01-25 21:40:52 -08:00
Visualizing the CPU profile
---------------------------
The output of `` pprof `` can be visualized in many ways. Here we output it as a
zoomable `` .svg `` image displaying the call graph annotated with hot paths.
.. code-block :: bash
# Use the appropriate path.
2018-11-13 14:48:33 -08:00
RAYLET=ray/python/ray/core/src/ray/raylet/raylet
2018-01-25 21:40:52 -08:00
2018-11-13 14:48:33 -08:00
google-pprof -svg $RAYLET /tmp/pprof.out > /tmp/pprof.svg
2018-01-25 21:40:52 -08:00
# Then open the .svg file with Chrome.
# If you realize the call graph is too large, use -focus=<some function> to zoom
# into subtrees.
2018-11-13 14:48:33 -08:00
google-pprof -focus=epoll_wait -svg $RAYLET /tmp/pprof.out > /tmp/pprof.svg
2018-01-25 21:40:52 -08:00
Here's a snapshot of an example svg output, taken from the official
documentation:
.. image :: http://goog-perftools.sourceforge.net/doc/pprof-test-big.gif
2019-09-26 10:30:37 -07:00
Running Microbenchmarks
-----------------------
To run a set of single-node Ray microbenchmarks, use:
.. code-block :: bash
ray microbenchmark
2020-11-23 14:28:59 -06:00
You can find the microbenchmark results for Ray releases in the `GitHub release logs <https://github.com/ray-project/ray/tree/master/release/release_logs> `__ .
2019-09-26 10:30:37 -07:00
2018-01-25 21:40:52 -08:00
References
----------
- The `pprof documentation <http://goog-perftools.sourceforge.net/doc/cpu_profiler.html> `_ .
- A `Go version of pprof <https://github.com/google/pprof> `_ .
- The `gperftools <https://github.com/gperftools/gperftools> `_ , including libprofiler, tcmalloc, and other goodies.