ray/rllib/utils/schedules/piecewise_schedule.py

93 lines
3.5 KiB
Python
Raw Normal View History

from ray.rllib.utils.annotations import override
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.schedules.schedule import Schedule
tf = try_import_tf()
def _linear_interpolation(l, r, alpha):
return l + alpha * (r - l)
class PiecewiseSchedule(Schedule):
def __init__(self,
endpoints,
framework,
interpolation=_linear_interpolation,
outside_value=None):
"""
Args:
endpoints (List[Tuple[int,float]]): A list of tuples
`(t, value)` such that the output
is an interpolation (given by the `interpolation` callable)
between two values.
E.g.
t=400 and endpoints=[(0, 20.0),(500, 30.0)]
output=20.0 + 0.8 * (30.0 - 20.0) = 28.0
NOTE: All the values for time must be sorted in an increasing
order.
interpolation (callable): A function that takes the left-value,
the right-value and an alpha interpolation parameter
(0.0=only left value, 1.0=only right value), which is the
fraction of distance from left endpoint to right endpoint.
outside_value (Optional[float]): If t in call to `value` is
outside of all the intervals in `endpoints` this value is
returned. If None then an AssertionError is raised when outside
value is requested.
"""
super().__init__(framework=framework)
idxes = [e[0] for e in endpoints]
assert idxes == sorted(idxes)
self.interpolation = interpolation
self.outside_value = outside_value
self.endpoints = endpoints
@override(Schedule)
def _value(self, t):
# Find t in our list of endpoints.
for (l_t, l), (r_t, r) in zip(self.endpoints[:-1], self.endpoints[1:]):
# When found, return an interpolation (default: linear).
if l_t <= t < r_t:
alpha = float(t - l_t) / (r_t - l_t)
return self.interpolation(l, r, alpha)
# t does not belong to any of the pieces, return `self.outside_value`.
assert self.outside_value is not None
return self.outside_value
@override(Schedule)
def _tf_value_op(self, t):
assert self.outside_value is not None, \
"tf-version of PiecewiseSchedule requires `outside_value` to be " \
"provided!"
endpoints = tf.cast(
tf.stack([e[0] for e in self.endpoints] + [-1]), tf.int32)
# Create all possible interpolation results.
results_list = []
for (l_t, l), (r_t, r) in zip(self.endpoints[:-1], self.endpoints[1:]):
alpha = tf.cast(t - l_t, tf.float32) / \
tf.cast(r_t - l_t, tf.float32)
results_list.append(self.interpolation(l, r, alpha))
# If t does not belong to any of the pieces, return `outside_value`.
results_list.append(self.outside_value)
results_list = tf.stack(results_list)
# Return correct results tensor depending on where we find t.
def _cond(i, x):
return tf.logical_not(
tf.logical_or(
tf.equal(endpoints[i + 1], -1),
tf.logical_and(endpoints[i] <= x, x < endpoints[i + 1])))
def _body(i, x):
return (i + 1, t)
idx_and_t = tf.while_loop(_cond, _body,
[tf.constant(0, dtype=tf.int32), t])
return results_list[idx_and_t[0]]