2016-06-25 00:13:47 +00:00
|
|
|
# Most of the tensorflow code is adapted from Tensorflow's tutorial on using CNNs to train MNIST
|
|
|
|
# https://www.tensorflow.org/versions/r0.9/tutorials/mnist/pros/index.html#build-a-multilayer-convolutional-network
|
|
|
|
import tensorflow as tf
|
|
|
|
from tensorflow.examples.tutorials.mnist import input_data
|
|
|
|
import numpy as np
|
|
|
|
import ray
|
|
|
|
|
|
|
|
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
|
|
|
|
|
|
|
|
def weight(shape, stddev):
|
|
|
|
initial = tf.truncated_normal(shape, stddev=stddev)
|
|
|
|
return tf.Variable(initial)
|
|
|
|
|
|
|
|
def bias(shape):
|
|
|
|
initial = tf.constant(0.1, shape=shape)
|
|
|
|
return tf.Variable(initial)
|
|
|
|
|
|
|
|
def conv2d(x, W):
|
|
|
|
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding="SAME")
|
|
|
|
|
|
|
|
def max_pool_2x2(x):
|
|
|
|
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
|
|
|
|
|
|
|
|
@ray.remote([dict, int], [float])
|
|
|
|
def train_cnn(params, epochs):
|
|
|
|
learning_rate = params["learning_rate"]
|
|
|
|
batch_size = params["batch_size"]
|
|
|
|
keep = 1 - params["dropout"]
|
|
|
|
stddev = params["stddev"]
|
|
|
|
x = tf.placeholder(tf.float32, shape=[None, 784])
|
|
|
|
y = tf.placeholder(tf.float32, shape=[None, 10])
|
|
|
|
keep_prob = tf.placeholder(tf.float32)
|
|
|
|
train_step, accuracy = cnn_setup(x, y, keep_prob, learning_rate, stddev)
|
|
|
|
with tf.Session() as sess:
|
|
|
|
sess.run(tf.initialize_all_variables())
|
|
|
|
for i in range(1, epochs):
|
|
|
|
batch = mnist.train.next_batch(batch_size)
|
|
|
|
sess.run(train_step, feed_dict={x: batch[0], y: batch[1], keep_prob: keep})
|
|
|
|
if i % 100 == 0: # checks if accuracy is low enough to stop early every set number of epochs
|
|
|
|
train_ac = accuracy.eval(feed_dict={x: batch[0], y: batch[1], keep_prob: 1.0})
|
2016-07-08 12:46:47 -07:00
|
|
|
if train_ac < 0.25: # Accuracy threshold is on a application to application basis.
|
2016-06-25 00:13:47 +00:00
|
|
|
totalacc = accuracy.eval(feed_dict={x: mnist.validation.images, y: mnist.validation.labels, keep_prob: 1.0})
|
|
|
|
return totalacc
|
|
|
|
totalacc = accuracy.eval(feed_dict={x: mnist.validation.images, y: mnist.validation.labels, keep_prob: 1.0})
|
2016-07-08 12:46:47 -07:00
|
|
|
return totalacc.astype("float64")
|
|
|
|
|
2016-06-25 00:13:47 +00:00
|
|
|
def cnn_setup(x, y, keep_prob, lr, stddev):
|
|
|
|
first_hidden = 32
|
|
|
|
second_hidden = 64
|
|
|
|
fc_hidden = 1024
|
|
|
|
W_conv1 = weight([5, 5, 1, first_hidden], stddev)
|
|
|
|
B_conv1 = bias([first_hidden])
|
|
|
|
x_image = tf.reshape(x, [-1, 28, 28, 1])
|
|
|
|
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + B_conv1)
|
|
|
|
h_pool1 = max_pool_2x2(h_conv1)
|
|
|
|
W_conv2 = weight([5, 5, first_hidden, second_hidden], stddev)
|
|
|
|
b_conv2 = bias([second_hidden])
|
|
|
|
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
|
|
|
|
h_pool2 = max_pool_2x2(h_conv2)
|
|
|
|
W_fc1 = weight([7 * 7 * second_hidden, fc_hidden], stddev)
|
|
|
|
b_fc1 = bias([fc_hidden])
|
|
|
|
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * second_hidden])
|
|
|
|
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
|
|
|
|
h_fc1_drop= tf.nn.dropout(h_fc1, keep_prob)
|
|
|
|
W_fc2 = weight([fc_hidden, 10], stddev)
|
|
|
|
b_fc2 = bias([10])
|
|
|
|
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
|
|
|
|
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(y_conv), reduction_indices=[1]))
|
|
|
|
correct_pred = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y, 1))
|
|
|
|
return tf.train.AdamOptimizer(lr).minimize(cross_entropy), tf.reduce_mean(tf.cast(correct_pred, tf.float32))
|