ray/rllib/env/remote_vector_env.py

193 lines
7 KiB
Python
Raw Normal View History

import logging
from typing import Tuple, Callable, List, Optional
import ray
from ray.rllib.env.base_env import BaseEnv, _DUMMY_AGENT_ID, ASYNC_RESET_RETURN
from ray.rllib.utils.annotations import override, PublicAPI
from ray.rllib.utils.typing import MultiEnvDict, EnvType, EnvID, MultiAgentDict
logger = logging.getLogger(__name__)
@PublicAPI
class RemoteVectorEnv(BaseEnv):
"""Vector env that executes envs in remote workers.
This provides dynamic batching of inference as observations are returned
from the remote simulator actors. Both single and multi-agent child envs
are supported, and envs can be stepped synchronously or async.
You shouldn't need to instantiate this class directly. It's automatically
inserted when you use the `remote_worker_envs` option for Trainers.
"""
def __init__(self,
make_env: Callable[[int], EnvType],
num_envs: int,
multiagent: bool,
remote_env_batch_wait_ms: int,
existing_envs: Optional[List[ray.actor.ActorHandle]] = None):
# Could be creating local or remote envs.
self.make_env = make_env
self.make_env_creates_actors = False
# Already existing env objects (generated by the RolloutWorker).
self.existing_envs = existing_envs or []
self.num_envs = num_envs
self.multiagent = multiagent
self.poll_timeout = remote_env_batch_wait_ms / 1000
self.actors = None # lazy init
self.pending = None # lazy init
@override(BaseEnv)
def poll(self) -> Tuple[MultiEnvDict, MultiEnvDict, MultiEnvDict,
MultiEnvDict, MultiEnvDict]:
if self.actors is None:
# `self.make_env` already produces Actors: Use it directly.
if len(self.existing_envs) > 0 and isinstance(
self.existing_envs[0], ray.actor.ActorHandle):
self.make_env_creates_actors = True
self.actors = []
while len(self.actors) < self.num_envs:
self.actors.append(self.make_env(len(self.actors)))
# `self.make_env` produces gym.Envs (or other similar types, such
# as MultiAgentEnv): Need to auto-wrap it here. The problem with
# this is that custom methods wil get lost.
else:
def make_remote_env(i):
logger.info("Launching env {} in remote actor".format(i))
if self.multiagent:
return _RemoteMultiAgentEnv.remote(self.make_env, i)
else:
return _RemoteSingleAgentEnv.remote(self.make_env, i)
self.actors = [
make_remote_env(i) for i in range(self.num_envs)
]
if self.pending is None:
self.pending = {a.reset.remote(): a for a in self.actors}
# each keyed by env_id in [0, num_remote_envs)
obs, rewards, dones, infos = {}, {}, {}, {}
ready = []
# Wait for at least 1 env to be ready here
while not ready:
ready, _ = ray.wait(
list(self.pending),
num_returns=len(self.pending),
timeout=self.poll_timeout)
# Get and return observations for each of the ready envs
env_ids = set()
for obj_ref in ready:
actor = self.pending.pop(obj_ref)
env_id = self.actors.index(actor)
env_ids.add(env_id)
ret = ray.get(obj_ref)
# Our sub-envs are simple Actor-turned gym.Envs or MultiAgentEnvs.
if self.make_env_creates_actors:
rew, done, info = None, None, None
if self.multiagent:
if isinstance(ret, tuple) and len(ret) == 4:
ob, rew, done, info = ret
else:
ob = ret
else:
if isinstance(ret, tuple) and len(ret) == 4:
ob = {_DUMMY_AGENT_ID: ret[0]}
rew = {_DUMMY_AGENT_ID: ret[1]}
done = {_DUMMY_AGENT_ID: ret[2], "__all__": ret[2]}
info = {_DUMMY_AGENT_ID: ret[3]}
else:
ob = {_DUMMY_AGENT_ID: ret}
if rew is None:
rew = {agent_id: 0 for agent_id in ob.keys()}
done = {"__all__": False}
info = {agent_id: {} for agent_id in ob.keys()}
# Our sub-envs are auto-wrapped and already behave like multi-agent
# envs.
else:
ob, rew, done, info = ret
obs[env_id] = ob
rewards[env_id] = rew
dones[env_id] = done
infos[env_id] = info
logger.debug("Got obs batch for actors {}".format(env_ids))
return obs, rewards, dones, infos, {}
@override(BaseEnv)
@PublicAPI
def send_actions(self, action_dict: MultiEnvDict) -> None:
for env_id, actions in action_dict.items():
actor = self.actors[env_id]
obj_ref = actor.step.remote(actions)
self.pending[obj_ref] = actor
@override(BaseEnv)
@PublicAPI
def try_reset(self,
env_id: Optional[EnvID] = None) -> Optional[MultiAgentDict]:
actor = self.actors[env_id]
obj_ref = actor.reset.remote()
self.pending[obj_ref] = actor
return ASYNC_RESET_RETURN
@override(BaseEnv)
@PublicAPI
def stop(self) -> None:
if self.actors is not None:
for actor in self.actors:
actor.__ray_terminate__.remote()
@override(BaseEnv)
@PublicAPI
def get_unwrapped(self):
return self.actors
@ray.remote(num_cpus=0)
class _RemoteMultiAgentEnv:
"""Wrapper class for making a multi-agent env a remote actor."""
def __init__(self, make_env, i):
self.env = make_env(i)
def reset(self):
obs = self.env.reset()
# each keyed by agent_id in the env
rew = {agent_id: 0 for agent_id in obs.keys()}
info = {agent_id: {} for agent_id in obs.keys()}
done = {"__all__": False}
return obs, rew, done, info
def step(self, action_dict):
return self.env.step(action_dict)
@ray.remote(num_cpus=0)
class _RemoteSingleAgentEnv:
"""Wrapper class for making a gym env a remote actor."""
def __init__(self, make_env, i):
self.env = make_env(i)
def reset(self):
obs = {_DUMMY_AGENT_ID: self.env.reset()}
rew = {agent_id: 0 for agent_id in obs.keys()}
done = {"__all__": False}
info = {agent_id: {} for agent_id in obs.keys()}
return obs, rew, done, info
def step(self, action):
obs, rew, done, info = self.env.step(action[_DUMMY_AGENT_ID])
obs, rew, done, info = [{
_DUMMY_AGENT_ID: x
} for x in [obs, rew, done, info]]
done["__all__"] = done[_DUMMY_AGENT_ID]
return obs, rew, done, info