ray/rllib/models/jax/misc.py

66 lines
2.3 KiB
Python
Raw Normal View History

import time
from typing import Callable, Optional
from ray.rllib.utils.framework import get_activation_fn, try_import_jax
jax, flax = try_import_jax()
nn = np = None
if flax:
import flax.linen as nn
import jax.numpy as np
class SlimFC:
"""Simple JAX version of a fully connected layer."""
def __init__(self,
in_size,
out_size,
initializer: Optional[Callable] = None,
activation_fn: Optional[str] = None,
use_bias: bool = True,
prng_key: Optional[jax.random.PRNGKey] = None,
name: Optional[str] = None):
"""Initializes a SlimFC instance.
Args:
in_size (int): The input size of the input data that will be passed
into this layer.
out_size (int): The number of nodes in this FC layer.
initializer (flax.:
activation_fn (str): An activation string specifier, e.g. "relu".
use_bias (bool): Whether to add biases to the dot product or not.
#bias_init (float):
prng_key (Optional[jax.random.PRNGKey]): An optional PRNG key to
use for initialization. If None, create a new random one.
name (Optional[str]): An optional name for this layer.
"""
# By default, use Glorot unform initializer.
if initializer is None:
initializer = flax.nn.initializers.xavier_uniform()
self.prng_key = prng_key or jax.random.PRNGKey(int(time.time()))
_, self.prng_key = jax.random.split(self.prng_key)
# Create the flax dense layer.
self._dense = nn.Dense(
out_size,
use_bias=use_bias,
kernel_init=initializer,
name=name,
)
# Initialize it.
dummy_in = jax.random.normal(
self.prng_key, (in_size, ), dtype=np.float32)
_, self.prng_key = jax.random.split(self.prng_key)
self._params = self._dense.init(self.prng_key, dummy_in)
# Activation function (if any; default=None (linear)).
self.activation_fn = get_activation_fn(activation_fn, "jax")
def __call__(self, x):
out = self._dense.apply(self._params, x)
if self.activation_fn:
out = self.activation_fn(out)
return out