2019-06-01 16:13:21 +08:00
|
|
|
import argparse
|
|
|
|
|
|
|
|
import ray
|
|
|
|
from ray import tune
|
|
|
|
from ray.rllib.agents.trainer_template import build_trainer
|
2019-09-11 12:15:34 -07:00
|
|
|
from ray.rllib.evaluation.postprocessing import discount
|
2019-06-01 16:13:21 +08:00
|
|
|
from ray.rllib.policy.tf_policy_template import build_tf_policy
|
|
|
|
from ray.rllib.utils import try_import_tf
|
|
|
|
|
|
|
|
tf = try_import_tf()
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument("--iters", type=int, default=200)
|
2020-02-15 23:50:44 +01:00
|
|
|
parser.add_argument("--num-cpus", type=int, default=0)
|
2019-06-01 16:13:21 +08:00
|
|
|
|
|
|
|
|
2019-08-23 02:21:11 -04:00
|
|
|
def policy_gradient_loss(policy, model, dist_class, train_batch):
|
|
|
|
logits, _ = model.from_batch(train_batch)
|
|
|
|
action_dist = dist_class(logits, model)
|
|
|
|
return -tf.reduce_mean(
|
2019-09-17 04:44:20 -04:00
|
|
|
action_dist.logp(train_batch["actions"]) * train_batch["returns"])
|
2019-09-11 12:15:34 -07:00
|
|
|
|
|
|
|
|
|
|
|
def calculate_advantages(policy,
|
|
|
|
sample_batch,
|
|
|
|
other_agent_batches=None,
|
|
|
|
episode=None):
|
2019-09-17 04:44:20 -04:00
|
|
|
sample_batch["returns"] = discount(sample_batch["rewards"], 0.99)
|
2019-09-11 12:15:34 -07:00
|
|
|
return sample_batch
|
2019-06-01 16:13:21 +08:00
|
|
|
|
|
|
|
|
|
|
|
# <class 'ray.rllib.policy.tf_policy_template.MyTFPolicy'>
|
|
|
|
MyTFPolicy = build_tf_policy(
|
|
|
|
name="MyTFPolicy",
|
|
|
|
loss_fn=policy_gradient_loss,
|
2019-09-11 12:15:34 -07:00
|
|
|
postprocess_fn=calculate_advantages,
|
2019-06-01 16:13:21 +08:00
|
|
|
)
|
|
|
|
|
|
|
|
# <class 'ray.rllib.agents.trainer_template.MyCustomTrainer'>
|
|
|
|
MyTrainer = build_trainer(
|
|
|
|
name="MyCustomTrainer",
|
|
|
|
default_policy=MyTFPolicy,
|
|
|
|
)
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
args = parser.parse_args()
|
2020-02-15 23:50:44 +01:00
|
|
|
ray.init(num_cpus=args.num_cpus or None)
|
2019-06-01 16:13:21 +08:00
|
|
|
tune.run(
|
|
|
|
MyTrainer,
|
|
|
|
stop={"training_iteration": args.iters},
|
|
|
|
config={
|
|
|
|
"env": "CartPole-v0",
|
|
|
|
"num_workers": 2,
|
|
|
|
})
|