ray/python/ray/rllib/utils/tf_run_builder.py

84 lines
2.7 KiB
Python
Raw Normal View History

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
import tensorflow as tf
from tensorflow.python.client import timeline
class TFRunBuilder(object):
"""Used to incrementally build up a TensorFlow run.
This is particularly useful for batching ops from multiple different
policies in the multi-agent setting.
"""
def __init__(self, session, debug_name):
self.session = session
self.debug_name = debug_name
self.feed_dict = {}
self.fetches = []
self._executed = None
def add_feed_dict(self, feed_dict):
assert not self._executed
for k in feed_dict:
assert k not in self.feed_dict
self.feed_dict.update(feed_dict)
def add_fetches(self, fetches):
assert not self._executed
base_index = len(self.fetches)
self.fetches.extend(fetches)
return list(range(base_index, len(self.fetches)))
def get(self, to_fetch):
if self._executed is None:
try:
self._executed = run_timeline(
self.session, self.fetches, self.debug_name,
self.feed_dict, os.environ.get("TF_TIMELINE_DIR"))
except Exception as e:
print("Error fetching: {}, feed_dict={}".format(
self.fetches, self.feed_dict))
raise e
if isinstance(to_fetch, int):
return self._executed[to_fetch]
elif isinstance(to_fetch, list):
return [self.get(x) for x in to_fetch]
elif isinstance(to_fetch, tuple):
return tuple(self.get(x) for x in to_fetch)
else:
raise ValueError("Unsupported fetch type: {}".format(to_fetch))
_count = 0
def run_timeline(sess, ops, debug_name, feed_dict={}, timeline_dir=None):
if timeline_dir:
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
start = time.time()
fetches = sess.run(
ops,
options=run_options,
run_metadata=run_metadata,
feed_dict=feed_dict)
trace = timeline.Timeline(step_stats=run_metadata.step_stats)
global _count
outf = os.path.join(
timeline_dir, "timeline-{}-{}-{}.json".format(
debug_name, os.getpid(), _count))
_count += 1
trace_file = open(outf, "w")
print("Wrote tf timeline ({} s) to {}".format(time.time() - start,
os.path.abspath(outf)))
trace_file.write(trace.generate_chrome_trace_format())
else:
fetches = sess.run(ops, feed_dict=feed_dict)
return fetches