ray/rllib/agents/ars/ars_tf_policy.py

72 lines
2.7 KiB
Python
Raw Normal View History

# Code in this file is copied and adapted from
# https://github.com/openai/evolution-strategies-starter.
import gym
import numpy as np
import ray
import ray.experimental.tf_utils
from ray.rllib.agents.es.es_tf_policy import make_session
from ray.rllib.models import ModelCatalog
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.utils.filter import get_filter
from ray.rllib.utils.framework import try_import_tf
2020-05-27 10:21:30 +02:00
from ray.rllib.utils.spaces.space_utils import unbatch
tf = try_import_tf()
class ARSTFPolicy:
def __init__(self, obs_space, action_space, config):
self.observation_space = obs_space
self.action_space = action_space
self.action_noise_std = config["action_noise_std"]
self.preprocessor = ModelCatalog.get_preprocessor_for_space(
self.observation_space)
self.observation_filter = get_filter(config["observation_filter"],
self.preprocessor.shape)
self.single_threaded = config.get("single_threaded", False)
self.sess = make_session(single_threaded=self.single_threaded)
self.inputs = tf.placeholder(tf.float32,
[None] + list(self.preprocessor.shape))
# Policy network.
dist_class, dist_dim = ModelCatalog.get_action_dist(
self.action_space, config["model"], dist_type="deterministic")
self.model = ModelCatalog.get_model_v2(
obs_space=self.preprocessor.observation_space,
action_space=self.action_space,
num_outputs=dist_dim,
model_config=config["model"])
dist_inputs, _ = self.model({SampleBatch.CUR_OBS: self.inputs})
dist = dist_class(dist_inputs, self.model)
self.sampler = dist.sample()
self.variables = ray.experimental.tf_utils.TensorFlowVariables(
dist_inputs, self.sess)
self.num_params = sum(
np.prod(variable.shape.as_list())
for _, variable in self.variables.variables.items())
self.sess.run(tf.global_variables_initializer())
def compute_actions(self, observation, add_noise=False, update=True):
observation = self.preprocessor.transform(observation)
observation = self.observation_filter(observation[None], update=update)
action = self.sess.run(
self.sampler, feed_dict={self.inputs: observation})
action = unbatch(action)
if add_noise and isinstance(self.action_space, gym.spaces.Box):
action += np.random.randn(*action.shape) * self.action_noise_std
return action
def set_flat_weights(self, x):
self.variables.set_flat(x)
def get_flat_weights(self):
return self.variables.get_flat()