ray/rllib/examples/env/multi_agent.py

170 lines
5.9 KiB
Python
Raw Normal View History

import gym
from ray.rllib.env.multi_agent_env import MultiAgentEnv
from ray.rllib.examples.env.mock_env import MockEnv, MockEnv2
from ray.rllib.examples.env.stateless_cartpole import StatelessCartPole
def make_multiagent(env_name_or_creator):
class MultiEnv(MultiAgentEnv):
def __init__(self, config):
num = config.pop("num_agents", 1)
if isinstance(env_name_or_creator, str):
self.agents = [
gym.make(env_name_or_creator) for _ in range(num)
]
else:
self.agents = [env_name_or_creator(config) for _ in range(num)]
self.dones = set()
self.observation_space = self.agents[0].observation_space
self.action_space = self.agents[0].action_space
def reset(self):
self.dones = set()
return {i: a.reset() for i, a in enumerate(self.agents)}
def step(self, action_dict):
obs, rew, done, info = {}, {}, {}, {}
for i, action in action_dict.items():
obs[i], rew[i], done[i], info[i] = self.agents[i].step(action)
if done[i]:
self.dones.add(i)
done["__all__"] = len(self.dones) == len(self.agents)
return obs, rew, done, info
return MultiEnv
class BasicMultiAgent(MultiAgentEnv):
"""Env of N independent agents, each of which exits after 25 steps."""
def __init__(self, num):
self.agents = [MockEnv(25) for _ in range(num)]
self.dones = set()
self.observation_space = gym.spaces.Discrete(2)
self.action_space = gym.spaces.Discrete(2)
self.resetted = False
def reset(self):
self.resetted = True
self.dones = set()
return {i: a.reset() for i, a in enumerate(self.agents)}
def step(self, action_dict):
obs, rew, done, info = {}, {}, {}, {}
for i, action in action_dict.items():
obs[i], rew[i], done[i], info[i] = self.agents[i].step(action)
if done[i]:
self.dones.add(i)
done["__all__"] = len(self.dones) == len(self.agents)
return obs, rew, done, info
class EarlyDoneMultiAgent(MultiAgentEnv):
"""Env for testing when the env terminates (after agent 0 does)."""
def __init__(self):
self.agents = [MockEnv(3), MockEnv(5)]
self.dones = set()
self.last_obs = {}
self.last_rew = {}
self.last_done = {}
self.last_info = {}
self.i = 0
self.observation_space = gym.spaces.Discrete(10)
self.action_space = gym.spaces.Discrete(2)
def reset(self):
self.dones = set()
self.last_obs = {}
self.last_rew = {}
self.last_done = {}
self.last_info = {}
self.i = 0
for i, a in enumerate(self.agents):
self.last_obs[i] = a.reset()
self.last_rew[i] = None
self.last_done[i] = False
self.last_info[i] = {}
obs_dict = {self.i: self.last_obs[self.i]}
self.i = (self.i + 1) % len(self.agents)
return obs_dict
def step(self, action_dict):
assert len(self.dones) != len(self.agents)
for i, action in action_dict.items():
(self.last_obs[i], self.last_rew[i], self.last_done[i],
self.last_info[i]) = self.agents[i].step(action)
obs = {self.i: self.last_obs[self.i]}
rew = {self.i: self.last_rew[self.i]}
done = {self.i: self.last_done[self.i]}
info = {self.i: self.last_info[self.i]}
if done[self.i]:
rew[self.i] = 0
self.dones.add(self.i)
self.i = (self.i + 1) % len(self.agents)
done["__all__"] = len(self.dones) == len(self.agents) - 1
return obs, rew, done, info
class RoundRobinMultiAgent(MultiAgentEnv):
"""Env of N independent agents, each of which exits after 5 steps.
On each step() of the env, only one agent takes an action."""
def __init__(self, num, increment_obs=False):
if increment_obs:
# Observations are 0, 1, 2, 3... etc. as time advances
self.agents = [MockEnv2(5) for _ in range(num)]
else:
# Observations are all zeros
self.agents = [MockEnv(5) for _ in range(num)]
self.dones = set()
self.last_obs = {}
self.last_rew = {}
self.last_done = {}
self.last_info = {}
self.i = 0
self.num = num
self.observation_space = gym.spaces.Discrete(10)
self.action_space = gym.spaces.Discrete(2)
def reset(self):
self.dones = set()
self.last_obs = {}
self.last_rew = {}
self.last_done = {}
self.last_info = {}
self.i = 0
for i, a in enumerate(self.agents):
self.last_obs[i] = a.reset()
self.last_rew[i] = None
self.last_done[i] = False
self.last_info[i] = {}
obs_dict = {self.i: self.last_obs[self.i]}
self.i = (self.i + 1) % self.num
return obs_dict
def step(self, action_dict):
assert len(self.dones) != len(self.agents)
for i, action in action_dict.items():
(self.last_obs[i], self.last_rew[i], self.last_done[i],
self.last_info[i]) = self.agents[i].step(action)
obs = {self.i: self.last_obs[self.i]}
rew = {self.i: self.last_rew[self.i]}
done = {self.i: self.last_done[self.i]}
info = {self.i: self.last_info[self.i]}
if done[self.i]:
rew[self.i] = 0
self.dones.add(self.i)
self.i = (self.i + 1) % self.num
done["__all__"] = len(self.dones) == len(self.agents)
return obs, rew, done, info
MultiAgentCartPole = make_multiagent("CartPole-v0")
MultiAgentMountainCar = make_multiagent("MountainCarContinuous-v0")
MultiAgentPendulum = make_multiagent("Pendulum-v0")
MultiAgentStatelessCartPole = make_multiagent(
lambda config: StatelessCartPole(config))