ray/rllib/examples/supervised_attention.py

82 lines
2.2 KiB
Python
Raw Normal View History

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from rllib.models.tf import attention
from ray.rllib.utils import try_import_tf
tf = try_import_tf()
def bit_shift_generator(seq_length, shift, batch_size):
while True:
values = np.array([0., 1.], dtype=np.float32)
seq = np.random.choice(values, (batch_size, seq_length, 1))
targets = np.squeeze(np.roll(seq, shift, axis=1).astype(np.int32))
targets[:, :shift] = 0
yield seq, targets
def make_model(seq_length, num_tokens, num_layers, attn_dim, num_heads,
head_dim, ff_hidden_dim):
return tf.keras.Sequential((
attention.make_TrXL(seq_length, num_layers, attn_dim, num_heads,
head_dim, ff_hidden_dim),
tf.keras.layers.Dense(num_tokens),
))
def train_loss(targets, outputs):
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=targets, logits=outputs)
return tf.reduce_mean(loss)
def train_bit_shift(seq_length, num_iterations, print_every_n):
optimizer = tf.keras.optimizers.Adam(1e-3)
model = make_model(
seq_length,
num_tokens=2,
num_layers=1,
attn_dim=10,
num_heads=5,
head_dim=20,
ff_hidden_dim=20,
)
shift = 10
train_batch = 10
test_batch = 100
data_gen = bit_shift_generator(
seq_length, shift=shift, batch_size=train_batch)
test_gen = bit_shift_generator(
seq_length, shift=shift, batch_size=test_batch)
@tf.function
def update_step(inputs, targets):
2020-05-08 16:24:20 +02:00
optimizer.minimize(lambda: train_loss(targets, model(inputs)),
lambda: model.trainable_variables)
for i, (inputs, targets) in zip(range(num_iterations), data_gen):
update_step(
tf.convert_to_tensor(inputs), tf.convert_to_tensor(targets))
if i % print_every_n == 0:
test_inputs, test_targets = next(test_gen)
print(i, train_loss(test_targets, model(test_inputs)))
if __name__ == "__main__":
tf.enable_eager_execution()
train_bit_shift(
seq_length=20,
num_iterations=2000,
print_every_n=200,
)