mirror of
https://github.com/vale981/ray
synced 2025-03-09 12:56:46 -04:00
31 lines
1.1 KiB
Python
31 lines
1.1 KiB
Python
![]() |
import ray
|
||
|
from ray.rllib.evaluation.postprocessing import Postprocessing, \
|
||
|
compute_advantages
|
||
|
from ray.rllib.policy.tf_policy_template import build_tf_policy
|
||
|
from ray.rllib.policy.sample_batch import SampleBatch
|
||
|
from ray.rllib.utils import try_import_tf
|
||
|
|
||
|
tf = try_import_tf()
|
||
|
|
||
|
|
||
|
def post_process_advantages(policy, sample_batch, other_agent_batches=None,
|
||
|
episode=None):
|
||
|
"""This adds the "advantages" column to the sample train_batch."""
|
||
|
return compute_advantages(sample_batch, 0.0, policy.config["gamma"],
|
||
|
use_gae=False)
|
||
|
|
||
|
|
||
|
def pg_tf_loss(policy, model, dist_class, train_batch):
|
||
|
"""The basic policy gradients loss."""
|
||
|
logits, _ = model.from_batch(train_batch)
|
||
|
action_dist = dist_class(logits, model)
|
||
|
return -tf.reduce_mean(action_dist.logp(train_batch[SampleBatch.ACTIONS])
|
||
|
* train_batch[Postprocessing.ADVANTAGES])
|
||
|
|
||
|
|
||
|
PGTFPolicy = build_tf_policy(
|
||
|
name="PGTFPolicy",
|
||
|
get_default_config=lambda: ray.rllib.agents.pg.pg.DEFAULT_CONFIG,
|
||
|
postprocess_fn=post_process_advantages,
|
||
|
loss_fn=pg_tf_loss)
|