2017-12-06 17:51:57 -08:00
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import ray
|
2018-03-15 15:57:31 -07:00
|
|
|
from ray.rllib.optimizers.policy_optimizer import PolicyOptimizer
|
2018-07-01 00:05:08 -07:00
|
|
|
from ray.rllib.evaluation.sample_batch import SampleBatch
|
2018-03-04 12:25:25 -08:00
|
|
|
from ray.rllib.utils.filter import RunningStat
|
2017-12-06 17:51:57 -08:00
|
|
|
from ray.rllib.utils.timer import TimerStat
|
|
|
|
|
|
|
|
|
2018-06-27 02:30:15 -07:00
|
|
|
class SyncSamplesOptimizer(PolicyOptimizer):
|
2017-12-06 17:51:57 -08:00
|
|
|
"""A simple synchronous RL optimizer.
|
|
|
|
|
|
|
|
In each step, this optimizer pulls samples from a number of remote
|
|
|
|
evaluators, concatenates them, and then updates a local model. The updated
|
|
|
|
model weights are then broadcast to all remote evaluators.
|
|
|
|
"""
|
|
|
|
|
2018-07-07 13:29:20 -07:00
|
|
|
def _init(self):
|
2017-12-06 17:51:57 -08:00
|
|
|
self.update_weights_timer = TimerStat()
|
|
|
|
self.sample_timer = TimerStat()
|
|
|
|
self.grad_timer = TimerStat()
|
2018-03-04 12:25:25 -08:00
|
|
|
self.throughput = RunningStat()
|
2017-12-06 17:51:57 -08:00
|
|
|
|
|
|
|
def step(self):
|
|
|
|
with self.update_weights_timer:
|
|
|
|
if self.remote_evaluators:
|
|
|
|
weights = ray.put(self.local_evaluator.get_weights())
|
|
|
|
for e in self.remote_evaluators:
|
|
|
|
e.set_weights.remote(weights)
|
|
|
|
|
|
|
|
with self.sample_timer:
|
|
|
|
if self.remote_evaluators:
|
2017-12-17 15:59:57 -08:00
|
|
|
samples = SampleBatch.concat_samples(
|
2017-12-06 17:51:57 -08:00
|
|
|
ray.get(
|
|
|
|
[e.sample.remote() for e in self.remote_evaluators]))
|
|
|
|
else:
|
|
|
|
samples = self.local_evaluator.sample()
|
|
|
|
|
|
|
|
with self.grad_timer:
|
2018-07-07 12:08:49 -07:00
|
|
|
self.local_evaluator.compute_apply(samples)
|
2018-03-04 12:25:25 -08:00
|
|
|
self.grad_timer.push_units_processed(samples.count)
|
|
|
|
|
|
|
|
self.num_steps_sampled += samples.count
|
|
|
|
self.num_steps_trained += samples.count
|
2017-12-06 17:51:57 -08:00
|
|
|
|
|
|
|
def stats(self):
|
2018-03-15 15:57:31 -07:00
|
|
|
return dict(PolicyOptimizer.stats(self), **{
|
2017-12-06 17:51:57 -08:00
|
|
|
"sample_time_ms": round(1000 * self.sample_timer.mean, 3),
|
|
|
|
"grad_time_ms": round(1000 * self.grad_timer.mean, 3),
|
|
|
|
"update_time_ms": round(1000 * self.update_weights_timer.mean, 3),
|
2018-03-04 12:25:25 -08:00
|
|
|
"opt_peak_throughput": round(self.grad_timer.mean_throughput, 3),
|
|
|
|
"opt_samples": round(self.grad_timer.mean_units_processed, 3),
|
|
|
|
})
|