mirror of
https://github.com/vale981/ray
synced 2025-03-10 13:26:39 -04:00
116 lines
3.4 KiB
Python
116 lines
3.4 KiB
Python
![]() |
# flake8: noqa
|
||
|
|
||
|
import os
|
||
|
from filelock import FileLock
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
from torchvision import datasets, transforms
|
||
|
|
||
|
EPOCH_SIZE = 512
|
||
|
TEST_SIZE = 256
|
||
|
|
||
|
|
||
|
def train(model, optimizer, train_loader, device=None):
|
||
|
device = device or torch.device("cpu")
|
||
|
model.train()
|
||
|
for batch_idx, (data, target) in enumerate(train_loader):
|
||
|
if batch_idx * len(data) > EPOCH_SIZE:
|
||
|
return
|
||
|
data, target = data.to(device), target.to(device)
|
||
|
optimizer.zero_grad()
|
||
|
output = model(data)
|
||
|
loss = F.nll_loss(output, target)
|
||
|
loss.backward()
|
||
|
optimizer.step()
|
||
|
|
||
|
|
||
|
def test(model, data_loader, device=None):
|
||
|
device = device or torch.device("cpu")
|
||
|
model.eval()
|
||
|
correct = 0
|
||
|
total = 0
|
||
|
with torch.no_grad():
|
||
|
for batch_idx, (data, target) in enumerate(data_loader):
|
||
|
if batch_idx * len(data) > TEST_SIZE:
|
||
|
break
|
||
|
data, target = data.to(device), target.to(device)
|
||
|
outputs = model(data)
|
||
|
_, predicted = torch.max(outputs.data, 1)
|
||
|
total += target.size(0)
|
||
|
correct += (predicted == target).sum().item()
|
||
|
|
||
|
return correct / total
|
||
|
|
||
|
|
||
|
def load_data():
|
||
|
mnist_transforms = transforms.Compose(
|
||
|
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
|
||
|
)
|
||
|
with FileLock(os.path.expanduser("~/data.lock")):
|
||
|
train_loader = torch.utils.data.DataLoader(
|
||
|
datasets.MNIST(
|
||
|
"~/data", train=True, download=True, transform=mnist_transforms
|
||
|
),
|
||
|
batch_size=64,
|
||
|
shuffle=True,
|
||
|
)
|
||
|
test_loader = torch.utils.data.DataLoader(
|
||
|
datasets.MNIST(
|
||
|
"~/data", train=False, download=True, transform=mnist_transforms
|
||
|
),
|
||
|
batch_size=64,
|
||
|
shuffle=True,
|
||
|
)
|
||
|
return train_loader, test_loader
|
||
|
|
||
|
|
||
|
class ConvNet(nn.Module):
|
||
|
def __init__(self):
|
||
|
super(ConvNet, self).__init__()
|
||
|
self.conv1 = nn.Conv2d(1, 3, kernel_size=3)
|
||
|
self.fc = nn.Linear(192, 10)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = F.relu(F.max_pool2d(self.conv1(x), 3))
|
||
|
x = x.view(-1, 192)
|
||
|
x = self.fc(x)
|
||
|
return F.log_softmax(x, dim=1)
|
||
|
|
||
|
|
||
|
# __pytorch_optuna_start__
|
||
|
# 1. Wrap your PyTorch model in an objective function.
|
||
|
import torch
|
||
|
from ray import tune
|
||
|
from ray.tune.suggest.optuna import OptunaSearch
|
||
|
|
||
|
|
||
|
# 1. Wrap a PyTorch model in an objective function.
|
||
|
def objective(config):
|
||
|
train_loader, test_loader = load_data() # Load some data
|
||
|
model = ConvNet().to("cpu") # Create a PyTorch conv net
|
||
|
optimizer = torch.optim.SGD( # Tune the optimizer
|
||
|
model.parameters(), lr=config["lr"], momentum=config["momentum"]
|
||
|
)
|
||
|
|
||
|
while True:
|
||
|
train(model, optimizer, train_loader) # Train the model
|
||
|
acc = test(model, test_loader) # Compute test accuracy
|
||
|
tune.report(mean_accuracy=acc) # Report to Tune
|
||
|
|
||
|
|
||
|
# 2. Define a search space and initialize the search algorithm.
|
||
|
search_space = {"lr": tune.loguniform(1e-4, 1e-2), "momentum": tune.uniform(0.1, 0.9)}
|
||
|
algo = OptunaSearch()
|
||
|
|
||
|
# 3. Start a Tune run that maximizes mean accuracy and stops after 5 iterations.
|
||
|
analysis = tune.run(
|
||
|
objective,
|
||
|
metric="mean_accuracy",
|
||
|
mode="max",
|
||
|
search_alg=algo,
|
||
|
stop={"training_iteration": 5},
|
||
|
config=search_space,
|
||
|
)
|
||
|
print("Best config is:", analysis.best_config)
|
||
|
# __pytorch_optuna_end__
|