2020-04-25 18:25:56 -07:00
.. _tune-analysis-docs:
Analysis (tune.analysis)
========================
2020-03-23 12:23:21 -07:00
2020-04-06 12:16:35 -07:00
You can use the `` ExperimentAnalysis `` object for analyzing results. It is returned automatically when calling `` tune.run `` .
.. code-block :: python
analysis = tune.run(
trainable,
name="example-experiment",
num_samples=10,
)
Here are some example operations for obtaining a summary of your experiment:
.. code-block :: python
# Get a dataframe for the last reported results of all of the trials
2020-09-09 05:00:52 +01:00
df = analysis.results_df
2020-04-06 12:16:35 -07:00
# Get a dataframe for the max accuracy seen for each trial
df = analysis.dataframe(metric="mean_accuracy", mode="max")
# Get a dict mapping {trial logdir -> dataframes} for all trials in the experiment.
all_dataframes = analysis.trial_dataframes
# Get a list of trials
trials = analysis.trials
2021-11-16 17:47:12 +01:00
You may want to get a summary of multiple experiments that point to the same `` local_dir `` . This is also supported by the `` ExperimentAnalysis `` class.
2020-04-06 12:16:35 -07:00
.. code-block :: python
2021-11-16 17:47:12 +01:00
from ray.tune import ExperimentAnalysis
analysis = ExperimentAnalysis("~/ray_results/example-experiment")
2020-04-06 12:16:35 -07:00
.. _exp-analysis-docstring:
2020-05-17 12:19:44 -07:00
ExperimentAnalysis (tune.ExperimentAnalysis)
--------------------------------------------
2020-03-23 12:23:21 -07:00
.. autoclass :: ray.tune.ExperimentAnalysis
:members: