2021-04-20 08:46:05 +02:00
|
|
|
"""Example of a custom gym environment and model. Run this for a demo.
|
|
|
|
|
|
|
|
This example shows:
|
|
|
|
- using a custom environment
|
|
|
|
- using a custom model
|
|
|
|
- using Tune for grid search
|
|
|
|
|
|
|
|
You can visualize experiment results in ~/ray_results using TensorBoard.
|
|
|
|
"""
|
|
|
|
import argparse
|
|
|
|
|
|
|
|
import ray
|
|
|
|
from ray import tune
|
|
|
|
from ray.rllib.examples.env.gpu_requiring_env import GPURequiringEnv
|
|
|
|
from ray.rllib.utils.framework import try_import_tf, try_import_torch
|
|
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
|
|
|
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
|
|
torch, nn = try_import_torch()
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
2021-05-18 13:18:12 +02:00
|
|
|
"--run",
|
|
|
|
type=str,
|
|
|
|
default="PPO",
|
|
|
|
help="The RLlib-registered algorithm to use.")
|
|
|
|
parser.add_argument(
|
|
|
|
"--framework",
|
|
|
|
choices=["tf", "tf2", "tfe", "torch"],
|
|
|
|
default="tf",
|
|
|
|
help="The DL framework specifier.")
|
2021-04-20 08:46:05 +02:00
|
|
|
parser.add_argument("--num-gpus", type=float, default=0.5)
|
|
|
|
parser.add_argument("--num-workers", type=int, default=1)
|
|
|
|
parser.add_argument("--num-gpus-per-worker", type=float, default=0.0)
|
|
|
|
parser.add_argument("--num-envs-per-worker", type=int, default=1)
|
2021-05-18 13:18:12 +02:00
|
|
|
parser.add_argument(
|
|
|
|
"--as-test",
|
|
|
|
action="store_true",
|
|
|
|
help="Whether this script should be run as a test: --stop-reward must "
|
|
|
|
"be achieved within --stop-timesteps AND --stop-iters.")
|
|
|
|
parser.add_argument(
|
|
|
|
"--stop-iters",
|
|
|
|
type=int,
|
|
|
|
default=50,
|
|
|
|
help="Number of iterations to train.")
|
|
|
|
parser.add_argument(
|
|
|
|
"--stop-timesteps",
|
|
|
|
type=int,
|
|
|
|
default=100000,
|
|
|
|
help="Number of timesteps to train.")
|
|
|
|
parser.add_argument(
|
|
|
|
"--stop-reward",
|
|
|
|
type=float,
|
|
|
|
default=180.0,
|
|
|
|
help="Reward at which we stop training.")
|
2021-04-20 08:46:05 +02:00
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
args = parser.parse_args()
|
|
|
|
ray.init(num_cpus=4)
|
|
|
|
|
|
|
|
# These configs have been tested on a p2.8xlarge machine (8 GPUs, 16 CPUs),
|
|
|
|
# where ray was started using only one of these GPUs:
|
|
|
|
# $ ray start --num-gpus=1 --head
|
|
|
|
|
|
|
|
# Note: A strange error could occur when using tf:
|
|
|
|
# "NotImplementedError: Cannot convert a symbolic Tensor
|
|
|
|
# (default_policy/cond/strided_slice:0) to a numpy array."
|
|
|
|
# In rllib/utils/exploration/random.py.
|
|
|
|
# Fix: Install numpy version 1.19.5.
|
|
|
|
|
|
|
|
# Tested arg combinations (4 tune trials will be setup; see
|
|
|
|
# tune.grid_search over 4 learning rates below):
|
|
|
|
# - num_gpus=0.5 (2 tune trials should run in parallel).
|
|
|
|
# - num_gpus=0.3 (3 tune trials should run in parallel).
|
|
|
|
# - num_gpus=0.25 (4 tune trials should run in parallel)
|
|
|
|
# - num_gpus=0.2 + num_gpus_per_worker=0.1 (1 worker) -> 0.3
|
|
|
|
# -> 3 tune trials should run in parallel.
|
|
|
|
# - num_gpus=0.2 + num_gpus_per_worker=0.1 (2 workers) -> 0.4
|
|
|
|
# -> 2 tune trials should run in parallel.
|
|
|
|
# - num_gpus=0.4 + num_gpus_per_worker=0.1 (2 workers) -> 0.6
|
|
|
|
# -> 1 tune trial should run in parallel.
|
|
|
|
|
|
|
|
config = {
|
|
|
|
# Setup the test env as one that requires a GPU, iff
|
|
|
|
# num_gpus_per_worker > 0.
|
|
|
|
"env": GPURequiringEnv
|
|
|
|
if args.num_gpus_per_worker > 0.0 else "CartPole-v0",
|
|
|
|
# How many GPUs does the local worker (driver) need? For most algos,
|
|
|
|
# this is where the learning updates happen.
|
|
|
|
# Set this to > 1 for multi-GPU learning.
|
|
|
|
"num_gpus": args.num_gpus,
|
|
|
|
# How many RolloutWorkers (each with n environment copies:
|
|
|
|
# `num_envs_per_worker`)?
|
|
|
|
"num_workers": args.num_workers,
|
|
|
|
# How many GPUs does each RolloutWorker (`num_workers`) need?
|
|
|
|
"num_gpus_per_worker": args.num_gpus_per_worker,
|
|
|
|
# This setting should not really matter as it does not affect the
|
|
|
|
# number of GPUs reserved for each worker.
|
|
|
|
"num_envs_per_worker": args.num_envs_per_worker,
|
|
|
|
# 4 tune trials altogether.
|
|
|
|
"lr": tune.grid_search([0.005, 0.003, 0.001, 0.0001]),
|
|
|
|
"framework": args.framework,
|
|
|
|
}
|
|
|
|
|
|
|
|
stop = {
|
|
|
|
"training_iteration": args.stop_iters,
|
|
|
|
"timesteps_total": args.stop_timesteps,
|
|
|
|
"episode_reward_mean": args.stop_reward,
|
|
|
|
}
|
|
|
|
|
|
|
|
# Note: The above GPU settings should also work in case you are not
|
|
|
|
# running via tune.run(), but instead do:
|
|
|
|
|
|
|
|
# >> from ray.rllib.agents.ppo import PPOTrainer
|
|
|
|
# >> trainer = PPOTrainer(config=config)
|
|
|
|
# >> for _ in range(10):
|
|
|
|
# >> results = trainer.train()
|
|
|
|
# >> print(results)
|
|
|
|
|
|
|
|
results = tune.run(args.run, config=config, stop=stop)
|
|
|
|
|
|
|
|
if args.as_test:
|
|
|
|
check_learning_achieved(results, args.stop_reward)
|
|
|
|
ray.shutdown()
|