ray/rllib/models/tf/tf_modelv2.py

110 lines
3.9 KiB
Python
Raw Normal View History

2019-07-03 15:59:47 -07:00
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.utils.annotations import PublicAPI
2019-07-03 15:59:47 -07:00
from ray.rllib.utils import try_import_tf
tf = try_import_tf()
@PublicAPI
2019-07-03 15:59:47 -07:00
class TFModelV2(ModelV2):
"""TF version of ModelV2.
Note that this class by itself is not a valid model unless you
implement forward() in a subclass."""
2019-07-03 15:59:47 -07:00
def __init__(self, obs_space, action_space, num_outputs, model_config,
2019-07-03 15:59:47 -07:00
name):
"""Initialize a TFModelV2.
Here is an example implementation for a subclass
``MyModelClass(TFModelV2)``::
def __init__(self, *args, **kwargs):
super(MyModelClass, self).__init__(*args, **kwargs)
input_layer = tf.keras.layers.Input(...)
hidden_layer = tf.keras.layers.Dense(...)(input_layer)
output_layer = tf.keras.layers.Dense(...)(hidden_layer)
value_layer = tf.keras.layers.Dense(...)(hidden_layer)
self.base_model = tf.keras.Model(
input_layer, [output_layer, value_layer])
self.register_variables(self.base_model.variables)
"""
2019-07-03 15:59:47 -07:00
ModelV2.__init__(
self,
obs_space,
action_space,
num_outputs,
2019-07-03 15:59:47 -07:00
model_config,
name,
framework="tf")
self.var_list = []
def forward(self, input_dict, state, seq_lens):
"""Call the model with the given input tensors and state.
Any complex observations (dicts, tuples, etc.) will be unpacked by
__call__ before being passed to forward(). To access the flattened
observation tensor, refer to input_dict["obs_flat"].
This method can be called any number of times. In eager execution,
each call to forward() will eagerly evaluate the model. In symbolic
execution, each call to forward creates a computation graph that
operates over the variables of this model (i.e., shares weights).
Custom models should override this instead of __call__.
Arguments:
input_dict (dict): dictionary of input tensors, including "obs",
"obs_flat", "prev_action", "prev_reward", "is_training"
state (list): list of state tensors with sizes matching those
returned by get_initial_state + the batch dimension
seq_lens (Tensor): 1d tensor holding input sequence lengths
Returns:
(outputs, state): The model output tensor of size
[BATCH, num_outputs]
Sample implementation for the ``MyModelClass`` example::
def forward(self, input_dict, state, seq_lens):
model_out, self._value_out = self.base_model(input_dict["obs"])
return model_out, state
"""
raise NotImplementedError
def value_function(self):
"""Return the value function estimate for the most recent forward pass.
Returns:
value estimate tensor of shape [BATCH].
Sample implementation for the ``MyModelClass`` example::
def value_function(self):
return self._value_out
"""
raise NotImplementedError
def update_ops(self):
"""Return the list of update ops for this model.
For example, this should include any BatchNorm update ops."""
return []
def register_variables(self, variables):
"""Register the given list of variables with this model."""
self.var_list.extend(variables)
def variables(self):
"""Returns the list of variables for this model."""
return list(self.var_list)
def trainable_variables(self):
"""Returns the list of trainable variables for this model."""
return [v for v in self.variables() if v.trainable]