ray/README.md

66 lines
2.3 KiB
Markdown
Raw Normal View History

2016-06-10 14:12:15 -07:00
# Ray
2016-02-22 17:32:07 -08:00
[![Build Status](https://travis-ci.org/ray-project/ray.svg?branch=master)](https://travis-ci.org/ray-project/ray)
2016-06-22 11:28:01 -07:00
Ray is an experimental distributed execution engine. It is under development and
not ready to be used.
2016-02-22 17:32:07 -08:00
The goal of Ray is to make it easy to write machine learning applications that
run on a cluster while providing the development and debugging experience of
working on a single machine.
Before jumping into the details, here's a simple Python example for doing a
Monte Carlo estimation of pi (using multiple cores or potentially multiple
machines).
```python
import ray
import numpy as np
# Start Ray with some workers.
ray.init(num_workers=10)
2016-07-28 20:47:37 -07:00
# Define a remote function for estimating pi.
@ray.remote
def estimate_pi(n):
x = np.random.uniform(size=n)
y = np.random.uniform(size=n)
return 4 * np.mean(x ** 2 + y ** 2 < 1)
2016-07-28 20:47:37 -07:00
# Launch 10 tasks, each of which estimates pi.
result_ids = []
2016-07-28 20:47:37 -07:00
for _ in range(10):
result_ids.append(estimate_pi.remote(100))
2016-07-28 20:47:37 -07:00
# Fetch the results of the tasks and print their average.
estimate = np.mean(ray.get(result_ids))
print("Pi is approximately {}.".format(estimate))
```
Within the for loop, each call to `estimate_pi.remote(100)` sends a message to
the scheduler asking it to schedule the task of running `estimate_pi` with the
2016-07-28 20:47:37 -07:00
argument `100`. This call returns right away without waiting for the actual
estimation of pi to take place. Instead of returning a float, it returns an
**object ID**, which represents the eventual output of the computation (this is
a similar to a Future).
The call to `ray.get(result_id)` takes an object ID and returns the actual
estimate of pi (waiting until the computation has finished if necessary).
## Next Steps
- Installation on [Ubuntu](doc/install-on-ubuntu.md), [Mac OS X](doc/install-on-macosx.md)
- [Troubleshooting](doc/installation-troubleshooting.md)
- [Tutorial](doc/tutorial.md)
- Documentation
- [Serialization in the Object Store](doc/serialization.md)
- [Environment Variables](doc/environment-variables.md)
2016-09-17 00:45:22 -07:00
- [Using Ray with TensorFlow](doc/using-ray-with-tensorflow.md)
- [Using Ray on a Cluster](doc/using-ray-on-a-cluster.md)
## Example Applications
- [Hyperparameter Optimization](examples/hyperopt/README.md)
- [Batch L-BFGS](examples/lbfgs/README.md)
2016-08-01 18:29:04 -07:00
- [Learning to Play Pong](examples/rl_pong/README.md)