2021-11-09 14:57:53 +09:00
|
|
|
import argparse
|
|
|
|
import os
|
|
|
|
import random
|
|
|
|
import string
|
|
|
|
import time
|
|
|
|
import json
|
|
|
|
import logging
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import ray
|
|
|
|
|
|
|
|
from ray.data.impl.progress_bar import ProgressBar
|
|
|
|
from ray._private.test_utils import (monitor_memory_usage, wait_for_condition,
|
|
|
|
get_and_run_node_killer)
|
|
|
|
|
|
|
|
|
|
|
|
def run_task_workload(total_num_cpus, smoke):
|
|
|
|
"""Run task-based workload that doesn't require object reconstruction.
|
|
|
|
"""
|
|
|
|
|
|
|
|
@ray.remote(num_cpus=1, max_retries=-1)
|
|
|
|
def task():
|
|
|
|
def generate_data(size_in_kb=10):
|
|
|
|
return np.zeros(1024 * size_in_kb, dtype=np.uint8)
|
|
|
|
|
|
|
|
a = ""
|
|
|
|
for _ in range(100000):
|
|
|
|
a = a + random.choice(string.ascii_letters)
|
|
|
|
return generate_data(size_in_kb=50)
|
|
|
|
|
|
|
|
@ray.remote(num_cpus=1, max_retries=-1)
|
|
|
|
def invoke_nested_task():
|
|
|
|
time.sleep(0.8)
|
|
|
|
return ray.get(task.remote())
|
|
|
|
|
|
|
|
multiplier = 25
|
|
|
|
# For smoke mode, run less number of tasks
|
|
|
|
if smoke:
|
|
|
|
multiplier = 1
|
|
|
|
TOTAL_TASKS = int(total_num_cpus * 2 * multiplier)
|
|
|
|
|
|
|
|
pb = ProgressBar("Chaos test", TOTAL_TASKS)
|
|
|
|
results = [invoke_nested_task.remote() for _ in range(TOTAL_TASKS)]
|
|
|
|
pb.block_until_complete(results)
|
|
|
|
pb.close()
|
|
|
|
|
|
|
|
# Consistency check.
|
|
|
|
wait_for_condition(
|
|
|
|
lambda: (
|
|
|
|
ray.cluster_resources().get("CPU", 0)
|
2021-11-11 22:01:19 +09:00
|
|
|
== ray.available_resources().get("CPU", 0)),
|
|
|
|
timeout=60)
|
2021-11-09 14:57:53 +09:00
|
|
|
|
|
|
|
|
|
|
|
def run_actor_workload(total_num_cpus, smoke):
|
|
|
|
"""Run actor-based workload.
|
|
|
|
|
|
|
|
The test checks if actor restart -1 and task_retries -1 works
|
|
|
|
as expected. It basically requires many actors to report the
|
|
|
|
seqno to the centralized DB actor while there are failures.
|
|
|
|
If at least once is guaranteed upon failures, this test
|
|
|
|
shouldn't fail.
|
|
|
|
"""
|
|
|
|
|
|
|
|
@ray.remote(num_cpus=0)
|
|
|
|
class DBActor:
|
|
|
|
def __init__(self):
|
|
|
|
self.letter_dict = set()
|
|
|
|
|
|
|
|
def add(self, letter):
|
|
|
|
self.letter_dict.add(letter)
|
|
|
|
|
|
|
|
def get(self):
|
|
|
|
return self.letter_dict
|
|
|
|
|
|
|
|
@ray.remote(num_cpus=1, max_restarts=-1, max_task_retries=-1)
|
|
|
|
class ReportActor:
|
|
|
|
def __init__(self, db_actor):
|
|
|
|
self.db_actor = db_actor
|
|
|
|
|
|
|
|
def add(self, letter):
|
|
|
|
ray.get(self.db_actor.add.remote(letter))
|
|
|
|
|
|
|
|
NUM_CPUS = int(total_num_cpus)
|
|
|
|
multiplier = 2
|
|
|
|
# For smoke mode, run less number of tasks
|
|
|
|
if smoke:
|
|
|
|
multiplier = 1
|
|
|
|
TOTAL_TASKS = int(300 * multiplier)
|
|
|
|
current_node_ip = ray.worker.global_worker.node_ip_address
|
|
|
|
db_actors = [
|
|
|
|
DBActor.options(resources={
|
|
|
|
f"node:{current_node_ip}": 0.001
|
|
|
|
}).remote() for _ in range(NUM_CPUS)
|
|
|
|
]
|
|
|
|
|
|
|
|
pb = ProgressBar("Chaos test", TOTAL_TASKS * NUM_CPUS)
|
|
|
|
actors = []
|
|
|
|
for db_actor in db_actors:
|
|
|
|
actors.append(ReportActor.remote(db_actor))
|
|
|
|
results = []
|
|
|
|
highest_reported_num = 0
|
|
|
|
for a in actors:
|
|
|
|
for _ in range(TOTAL_TASKS):
|
|
|
|
results.append(a.add.remote(str(highest_reported_num)))
|
|
|
|
highest_reported_num += 1
|
|
|
|
pb.fetch_until_complete(results)
|
|
|
|
pb.close()
|
|
|
|
for actor in actors:
|
|
|
|
ray.kill(actor)
|
|
|
|
|
|
|
|
# Consistency check
|
|
|
|
wait_for_condition(
|
|
|
|
lambda: (
|
|
|
|
ray.cluster_resources().get("CPU", 0)
|
2021-11-11 22:01:19 +09:00
|
|
|
== ray.available_resources().get("CPU", 0)),
|
|
|
|
timeout=60)
|
2021-11-09 14:57:53 +09:00
|
|
|
letter_set = set()
|
|
|
|
for db_actor in db_actors:
|
|
|
|
letter_set.update(ray.get(db_actor.get.remote()))
|
|
|
|
# Make sure the DB actor didn't lose any report.
|
|
|
|
# If this assert fails, that means at least once actor task semantic
|
|
|
|
# wasn't guaranteed.
|
|
|
|
for i in range(highest_reported_num):
|
|
|
|
assert str(i) in letter_set, i
|
|
|
|
|
|
|
|
|
|
|
|
def run_placement_group_workload(total_num_cpus, smoke):
|
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
|
|
|
|
def parse_script_args():
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument("--node-kill-interval", type=int, default=60)
|
|
|
|
parser.add_argument("--workload", type=str)
|
|
|
|
parser.add_argument("--smoke", action="store_true")
|
|
|
|
return parser.parse_known_args()
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
"""Test task/actor/placement group basic chaos test.
|
|
|
|
|
|
|
|
Currently, it only tests node failures scenario.
|
|
|
|
Node failures are implemented by an actor that keeps calling
|
|
|
|
Raylet's KillRaylet RPC.
|
|
|
|
|
|
|
|
Ideally, we should setup the infra to cause machine failures/
|
|
|
|
network partitions/etc., but we don't do that for now.
|
|
|
|
|
|
|
|
In the short term, we will only test gRPC network delay +
|
|
|
|
node failures.
|
|
|
|
|
|
|
|
Currently, the test runs 3 steps. Each steps records the
|
|
|
|
peak memory usage to observe the memory usage while there
|
|
|
|
are node failures.
|
|
|
|
|
|
|
|
Step 1: Warm up the cluster. It is needed to pre-start workers
|
|
|
|
if necessary.
|
|
|
|
|
|
|
|
Step 2: Start the test without a failure.
|
|
|
|
|
|
|
|
Step 3: Start the test with constant node failures.
|
|
|
|
"""
|
|
|
|
args, unknown = parse_script_args()
|
|
|
|
logging.info("Received arguments: {}".format(args))
|
|
|
|
ray.init(address="auto")
|
|
|
|
total_num_cpus = ray.cluster_resources()["CPU"]
|
|
|
|
total_nodes = 0
|
|
|
|
for n in ray.nodes():
|
|
|
|
if n["Alive"]:
|
|
|
|
total_nodes += 1
|
|
|
|
monitor_actor = monitor_memory_usage()
|
|
|
|
|
|
|
|
workload = None
|
|
|
|
if args.workload == "tasks":
|
|
|
|
workload = run_task_workload
|
|
|
|
elif args.workload == "actors":
|
|
|
|
workload = run_actor_workload
|
|
|
|
elif args.workload == "pg":
|
|
|
|
workload = run_placement_group_workload
|
|
|
|
else:
|
|
|
|
assert False
|
|
|
|
|
|
|
|
# Step 1
|
|
|
|
print("Warm up... Prestarting workers if necessary.")
|
|
|
|
start = time.time()
|
|
|
|
workload(total_num_cpus, args.smoke)
|
|
|
|
|
|
|
|
# Step 2
|
|
|
|
print("Running without failures")
|
|
|
|
start = time.time()
|
|
|
|
workload(total_num_cpus, args.smoke)
|
|
|
|
print(f"Runtime when there are no failures: {time.time() - start}")
|
|
|
|
used_gb, usage = ray.get(monitor_actor.get_peak_memory_info.remote())
|
|
|
|
print("Memory usage without failures.")
|
|
|
|
print(f"Peak memory usage: {round(used_gb, 2)}GB")
|
|
|
|
print(f"Peak memory usage per processes:\n {usage}")
|
|
|
|
|
|
|
|
# Step 3
|
|
|
|
print("Running with failures")
|
|
|
|
node_killer = get_and_run_node_killer(
|
|
|
|
node_kill_interval_s=args.node_kill_interval)
|
|
|
|
start = time.time()
|
|
|
|
workload(total_num_cpus, args.smoke)
|
|
|
|
print(f"Runtime when there are many failures: {time.time() - start}")
|
|
|
|
print(f"Total node failures: "
|
|
|
|
f"{ray.get(node_killer.get_total_killed_nodes.remote())}")
|
|
|
|
node_killer.stop_run.remote()
|
|
|
|
used_gb, usage = ray.get(monitor_actor.get_peak_memory_info.remote())
|
|
|
|
print("Memory usage with failures.")
|
|
|
|
print(f"Peak memory usage: {round(used_gb, 2)}GB")
|
|
|
|
print(f"Peak memory usage per processes:\n {usage}")
|
|
|
|
|
|
|
|
# Report the result.
|
|
|
|
ray.get(monitor_actor.stop_run.remote())
|
|
|
|
with open(os.environ["TEST_OUTPUT_JSON"], "w") as f:
|
|
|
|
f.write(
|
|
|
|
json.dumps({
|
|
|
|
"success": 1,
|
|
|
|
"_peak_memory": round(used_gb, 2),
|
|
|
|
"_peak_process_memory": usage
|
|
|
|
}))
|
|
|
|
|
|
|
|
|
|
|
|
main()
|