ray/rllib/tests/test_catalog.py

179 lines
6.7 KiB
Python
Raw Normal View History

import gym
from gym.spaces import Box, Discrete, Tuple
import numpy as np
import unittest
import ray
[RLlib] SAC Torch (incl. Atari learning) (#7984) * Policy-classes cleanup and torch/tf unification. - Make Policy abstract. - Add `action_dist` to call to `extra_action_out_fn` (necessary for PPO torch). - Move some methods and vars to base Policy (from TFPolicy): num_state_tensors, ACTION_PROB, ACTION_LOGP and some more. * Fix `clip_action` import from Policy (should probably be moved into utils altogether). * - Move `is_recurrent()` and `num_state_tensors()` into TFPolicy (from DynamicTFPolicy). - Add config to all Policy c'tor calls (as 3rd arg after obs and action spaces). * Add `config` to c'tor call to TFPolicy. * Add missing `config` to c'tor call to TFPolicy in marvil_policy.py. * Fix test_rollout_worker.py::MockPolicy and BadPolicy classes (Policy base class is now abstract). * Fix LINT errors in Policy classes. * Implement StatefulPolicy abstract methods in test cases: test_multi_agent_env.py. * policy.py LINT errors. * Create a simple TestPolicy to sub-class from when testing Policies (reduces code in some test cases). * policy.py - Remove abstractmethod from `apply_gradients` and `compute_gradients` (these are not required iff `learn_on_batch` implemented). - Fix docstring of `num_state_tensors`. * Make QMIX torch Policy a child of TorchPolicy (instead of Policy). * QMixPolicy add empty implementations of abstract Policy methods. * Store Policy's config in self.config in base Policy c'tor. * - Make only compute_actions in base Policy's an abstractmethod and provide pass implementation to all other methods if not defined. - Fix state_batches=None (most Policies don't have internal states). * Cartpole tf learning. * Cartpole tf AND torch learning (in ~ same ts). * Cartpole tf AND torch learning (in ~ same ts). 2 * Cartpole tf (torch syntax-broken) learning (in ~ same ts). 3 * Cartpole tf AND torch learning (in ~ same ts). 4 * Cartpole tf AND torch learning (in ~ same ts). 5 * Cartpole tf AND torch learning (in ~ same ts). 6 * Cartpole tf AND torch learning (in ~ same ts). Pendulum tf learning. * WIP. * WIP. * SAC torch learning Pendulum. * WIP. * SAC torch and tf learning Pendulum and Cartpole after cleanup. * WIP. * LINT. * LINT. * SAC: Move policy.target_model to policy.device as well. * Fixes and cleanup. * Fix data-format of tf keras Conv2d layers (broken for some tf-versions which have data_format="channels_first" as default). * Fixes and LINT. * Fixes and LINT. * Fix and LINT. * WIP. * Test fixes and LINT. * Fixes and LINT. Co-authored-by: Sven Mika <sven@Svens-MacBook-Pro.local>
2020-04-15 13:25:16 +02:00
from ray.rllib.models import ModelCatalog, MODEL_DEFAULTS, ActionDistribution
from ray.rllib.models.tf.tf_modelv2 import TFModelV2
from ray.rllib.models.tf.tf_action_dist import TFActionDistribution
from ray.rllib.models.preprocessors import (NoPreprocessor, OneHotPreprocessor,
Preprocessor)
from ray.rllib.models.tf.fcnet import FullyConnectedNetwork
from ray.rllib.models.tf.visionnet import VisionNetwork
[RLlib] SAC Torch (incl. Atari learning) (#7984) * Policy-classes cleanup and torch/tf unification. - Make Policy abstract. - Add `action_dist` to call to `extra_action_out_fn` (necessary for PPO torch). - Move some methods and vars to base Policy (from TFPolicy): num_state_tensors, ACTION_PROB, ACTION_LOGP and some more. * Fix `clip_action` import from Policy (should probably be moved into utils altogether). * - Move `is_recurrent()` and `num_state_tensors()` into TFPolicy (from DynamicTFPolicy). - Add config to all Policy c'tor calls (as 3rd arg after obs and action spaces). * Add `config` to c'tor call to TFPolicy. * Add missing `config` to c'tor call to TFPolicy in marvil_policy.py. * Fix test_rollout_worker.py::MockPolicy and BadPolicy classes (Policy base class is now abstract). * Fix LINT errors in Policy classes. * Implement StatefulPolicy abstract methods in test cases: test_multi_agent_env.py. * policy.py LINT errors. * Create a simple TestPolicy to sub-class from when testing Policies (reduces code in some test cases). * policy.py - Remove abstractmethod from `apply_gradients` and `compute_gradients` (these are not required iff `learn_on_batch` implemented). - Fix docstring of `num_state_tensors`. * Make QMIX torch Policy a child of TorchPolicy (instead of Policy). * QMixPolicy add empty implementations of abstract Policy methods. * Store Policy's config in self.config in base Policy c'tor. * - Make only compute_actions in base Policy's an abstractmethod and provide pass implementation to all other methods if not defined. - Fix state_batches=None (most Policies don't have internal states). * Cartpole tf learning. * Cartpole tf AND torch learning (in ~ same ts). * Cartpole tf AND torch learning (in ~ same ts). 2 * Cartpole tf (torch syntax-broken) learning (in ~ same ts). 3 * Cartpole tf AND torch learning (in ~ same ts). 4 * Cartpole tf AND torch learning (in ~ same ts). 5 * Cartpole tf AND torch learning (in ~ same ts). 6 * Cartpole tf AND torch learning (in ~ same ts). Pendulum tf learning. * WIP. * WIP. * SAC torch learning Pendulum. * WIP. * SAC torch and tf learning Pendulum and Cartpole after cleanup. * WIP. * LINT. * LINT. * SAC: Move policy.target_model to policy.device as well. * Fixes and cleanup. * Fix data-format of tf keras Conv2d layers (broken for some tf-versions which have data_format="channels_first" as default). * Fixes and LINT. * Fixes and LINT. * Fix and LINT. * WIP. * Test fixes and LINT. * Fixes and LINT. Co-authored-by: Sven Mika <sven@Svens-MacBook-Pro.local>
2020-04-15 13:25:16 +02:00
from ray.rllib.utils.annotations import override
from ray.rllib.utils.framework import try_import_tf
tf1, tf, tfv = try_import_tf()
class CustomPreprocessor(Preprocessor):
def _init_shape(self, obs_space, options):
return [1]
class CustomPreprocessor2(Preprocessor):
def _init_shape(self, obs_space, options):
return [1]
class CustomModel(TFModelV2):
[rllib] General RNN support (#2299) * wip * cls * re * wip * wip * a3c working * torch support * pg works * lint * rm v2 * consumer id * clean up pg * clean up more * fix python 2.7 * tf session management * docs * dqn wip * fix compile * dqn * apex runs * up * impotrs * ddpg * quotes * fix tests * fix last r * fix tests * lint * pass checkpoint restore * kwar * nits * policy graph * fix yapf * com * class * pyt * vectorization * update * test cpe * unit test * fix ddpg2 * changes * wip * args * faster test * common * fix * add alg option * batch mode and policy serving * multi serving test * todo * wip * serving test * doc async env * num envs * comments * thread * remove init hook * update * fix ppo * comments1 * fix * updates * add jenkins tests * fix * fix pytorch * fix * fixes * fix a3c policy * fix squeeze * fix trunc on apex * fix squeezing for real * update * remove horizon test for now * multiagent wip * update * fix race condition * fix ma * t * doc * st * wip * example * wip * working * cartpole * wip * batch wip * fix bug * make other_batches None default * working * debug * nit * warn * comments * fix ppo * fix obs filter * update * wip * tf * update * fix * cleanup * cleanup * spacing * model * fix * dqn * fix ddpg * doc * keep names * update * fix * com * docs * clarify model outputs * Update torch_policy_graph.py * fix obs filter * pass thru worker index * fix * rename * vlad torch comments * fix log action * debug name * fix lstm * remove unused ddpg net * remove conv net * revert lstm * wip * wip * cast * wip * works * fix a3c * works * lstm util test * doc * clean up * update * fix lstm check * move to end * fix sphinx * fix cmd * remove bad doc * clarify * copy * async sa * fix * comments * fix a3c conf * tune lstm * fix reshape * fix * back to 16 * tuned a3c update * update * tuned * optional * fix catalog * remove prep
2018-06-27 22:51:04 -07:00
def _build_layers(self, *args):
return tf.constant([[0] * 5]), None
class CustomActionDistribution(TFActionDistribution):
[RLlib] SAC Torch (incl. Atari learning) (#7984) * Policy-classes cleanup and torch/tf unification. - Make Policy abstract. - Add `action_dist` to call to `extra_action_out_fn` (necessary for PPO torch). - Move some methods and vars to base Policy (from TFPolicy): num_state_tensors, ACTION_PROB, ACTION_LOGP and some more. * Fix `clip_action` import from Policy (should probably be moved into utils altogether). * - Move `is_recurrent()` and `num_state_tensors()` into TFPolicy (from DynamicTFPolicy). - Add config to all Policy c'tor calls (as 3rd arg after obs and action spaces). * Add `config` to c'tor call to TFPolicy. * Add missing `config` to c'tor call to TFPolicy in marvil_policy.py. * Fix test_rollout_worker.py::MockPolicy and BadPolicy classes (Policy base class is now abstract). * Fix LINT errors in Policy classes. * Implement StatefulPolicy abstract methods in test cases: test_multi_agent_env.py. * policy.py LINT errors. * Create a simple TestPolicy to sub-class from when testing Policies (reduces code in some test cases). * policy.py - Remove abstractmethod from `apply_gradients` and `compute_gradients` (these are not required iff `learn_on_batch` implemented). - Fix docstring of `num_state_tensors`. * Make QMIX torch Policy a child of TorchPolicy (instead of Policy). * QMixPolicy add empty implementations of abstract Policy methods. * Store Policy's config in self.config in base Policy c'tor. * - Make only compute_actions in base Policy's an abstractmethod and provide pass implementation to all other methods if not defined. - Fix state_batches=None (most Policies don't have internal states). * Cartpole tf learning. * Cartpole tf AND torch learning (in ~ same ts). * Cartpole tf AND torch learning (in ~ same ts). 2 * Cartpole tf (torch syntax-broken) learning (in ~ same ts). 3 * Cartpole tf AND torch learning (in ~ same ts). 4 * Cartpole tf AND torch learning (in ~ same ts). 5 * Cartpole tf AND torch learning (in ~ same ts). 6 * Cartpole tf AND torch learning (in ~ same ts). Pendulum tf learning. * WIP. * WIP. * SAC torch learning Pendulum. * WIP. * SAC torch and tf learning Pendulum and Cartpole after cleanup. * WIP. * LINT. * LINT. * SAC: Move policy.target_model to policy.device as well. * Fixes and cleanup. * Fix data-format of tf keras Conv2d layers (broken for some tf-versions which have data_format="channels_first" as default). * Fixes and LINT. * Fixes and LINT. * Fix and LINT. * WIP. * Test fixes and LINT. * Fixes and LINT. Co-authored-by: Sven Mika <sven@Svens-MacBook-Pro.local>
2020-04-15 13:25:16 +02:00
def __init__(self, inputs, model):
# Store our output shape.
custom_model_config = model.model_config["custom_model_config"]
if "output_dim" in custom_model_config:
[RLlib] SAC Torch (incl. Atari learning) (#7984) * Policy-classes cleanup and torch/tf unification. - Make Policy abstract. - Add `action_dist` to call to `extra_action_out_fn` (necessary for PPO torch). - Move some methods and vars to base Policy (from TFPolicy): num_state_tensors, ACTION_PROB, ACTION_LOGP and some more. * Fix `clip_action` import from Policy (should probably be moved into utils altogether). * - Move `is_recurrent()` and `num_state_tensors()` into TFPolicy (from DynamicTFPolicy). - Add config to all Policy c'tor calls (as 3rd arg after obs and action spaces). * Add `config` to c'tor call to TFPolicy. * Add missing `config` to c'tor call to TFPolicy in marvil_policy.py. * Fix test_rollout_worker.py::MockPolicy and BadPolicy classes (Policy base class is now abstract). * Fix LINT errors in Policy classes. * Implement StatefulPolicy abstract methods in test cases: test_multi_agent_env.py. * policy.py LINT errors. * Create a simple TestPolicy to sub-class from when testing Policies (reduces code in some test cases). * policy.py - Remove abstractmethod from `apply_gradients` and `compute_gradients` (these are not required iff `learn_on_batch` implemented). - Fix docstring of `num_state_tensors`. * Make QMIX torch Policy a child of TorchPolicy (instead of Policy). * QMixPolicy add empty implementations of abstract Policy methods. * Store Policy's config in self.config in base Policy c'tor. * - Make only compute_actions in base Policy's an abstractmethod and provide pass implementation to all other methods if not defined. - Fix state_batches=None (most Policies don't have internal states). * Cartpole tf learning. * Cartpole tf AND torch learning (in ~ same ts). * Cartpole tf AND torch learning (in ~ same ts). 2 * Cartpole tf (torch syntax-broken) learning (in ~ same ts). 3 * Cartpole tf AND torch learning (in ~ same ts). 4 * Cartpole tf AND torch learning (in ~ same ts). 5 * Cartpole tf AND torch learning (in ~ same ts). 6 * Cartpole tf AND torch learning (in ~ same ts). Pendulum tf learning. * WIP. * WIP. * SAC torch learning Pendulum. * WIP. * SAC torch and tf learning Pendulum and Cartpole after cleanup. * WIP. * LINT. * LINT. * SAC: Move policy.target_model to policy.device as well. * Fixes and cleanup. * Fix data-format of tf keras Conv2d layers (broken for some tf-versions which have data_format="channels_first" as default). * Fixes and LINT. * Fixes and LINT. * Fix and LINT. * WIP. * Test fixes and LINT. * Fixes and LINT. Co-authored-by: Sven Mika <sven@Svens-MacBook-Pro.local>
2020-04-15 13:25:16 +02:00
self.output_shape = tf.concat(
[tf.shape(inputs)[:1], custom_model_config["output_dim"]],
axis=0)
[RLlib] SAC Torch (incl. Atari learning) (#7984) * Policy-classes cleanup and torch/tf unification. - Make Policy abstract. - Add `action_dist` to call to `extra_action_out_fn` (necessary for PPO torch). - Move some methods and vars to base Policy (from TFPolicy): num_state_tensors, ACTION_PROB, ACTION_LOGP and some more. * Fix `clip_action` import from Policy (should probably be moved into utils altogether). * - Move `is_recurrent()` and `num_state_tensors()` into TFPolicy (from DynamicTFPolicy). - Add config to all Policy c'tor calls (as 3rd arg after obs and action spaces). * Add `config` to c'tor call to TFPolicy. * Add missing `config` to c'tor call to TFPolicy in marvil_policy.py. * Fix test_rollout_worker.py::MockPolicy and BadPolicy classes (Policy base class is now abstract). * Fix LINT errors in Policy classes. * Implement StatefulPolicy abstract methods in test cases: test_multi_agent_env.py. * policy.py LINT errors. * Create a simple TestPolicy to sub-class from when testing Policies (reduces code in some test cases). * policy.py - Remove abstractmethod from `apply_gradients` and `compute_gradients` (these are not required iff `learn_on_batch` implemented). - Fix docstring of `num_state_tensors`. * Make QMIX torch Policy a child of TorchPolicy (instead of Policy). * QMixPolicy add empty implementations of abstract Policy methods. * Store Policy's config in self.config in base Policy c'tor. * - Make only compute_actions in base Policy's an abstractmethod and provide pass implementation to all other methods if not defined. - Fix state_batches=None (most Policies don't have internal states). * Cartpole tf learning. * Cartpole tf AND torch learning (in ~ same ts). * Cartpole tf AND torch learning (in ~ same ts). 2 * Cartpole tf (torch syntax-broken) learning (in ~ same ts). 3 * Cartpole tf AND torch learning (in ~ same ts). 4 * Cartpole tf AND torch learning (in ~ same ts). 5 * Cartpole tf AND torch learning (in ~ same ts). 6 * Cartpole tf AND torch learning (in ~ same ts). Pendulum tf learning. * WIP. * WIP. * SAC torch learning Pendulum. * WIP. * SAC torch and tf learning Pendulum and Cartpole after cleanup. * WIP. * LINT. * LINT. * SAC: Move policy.target_model to policy.device as well. * Fixes and cleanup. * Fix data-format of tf keras Conv2d layers (broken for some tf-versions which have data_format="channels_first" as default). * Fixes and LINT. * Fixes and LINT. * Fix and LINT. * WIP. * Test fixes and LINT. * Fixes and LINT. Co-authored-by: Sven Mika <sven@Svens-MacBook-Pro.local>
2020-04-15 13:25:16 +02:00
else:
self.output_shape = tf.shape(inputs)
super().__init__(inputs, model)
@staticmethod
def required_model_output_shape(action_space, model_config=None):
custom_model_config = model_config["custom_model_config"] or {}
if custom_model_config is not None and \
custom_model_config.get("output_dim"):
return custom_model_config.get("output_dim")
return action_space.shape
[RLlib] SAC Torch (incl. Atari learning) (#7984) * Policy-classes cleanup and torch/tf unification. - Make Policy abstract. - Add `action_dist` to call to `extra_action_out_fn` (necessary for PPO torch). - Move some methods and vars to base Policy (from TFPolicy): num_state_tensors, ACTION_PROB, ACTION_LOGP and some more. * Fix `clip_action` import from Policy (should probably be moved into utils altogether). * - Move `is_recurrent()` and `num_state_tensors()` into TFPolicy (from DynamicTFPolicy). - Add config to all Policy c'tor calls (as 3rd arg after obs and action spaces). * Add `config` to c'tor call to TFPolicy. * Add missing `config` to c'tor call to TFPolicy in marvil_policy.py. * Fix test_rollout_worker.py::MockPolicy and BadPolicy classes (Policy base class is now abstract). * Fix LINT errors in Policy classes. * Implement StatefulPolicy abstract methods in test cases: test_multi_agent_env.py. * policy.py LINT errors. * Create a simple TestPolicy to sub-class from when testing Policies (reduces code in some test cases). * policy.py - Remove abstractmethod from `apply_gradients` and `compute_gradients` (these are not required iff `learn_on_batch` implemented). - Fix docstring of `num_state_tensors`. * Make QMIX torch Policy a child of TorchPolicy (instead of Policy). * QMixPolicy add empty implementations of abstract Policy methods. * Store Policy's config in self.config in base Policy c'tor. * - Make only compute_actions in base Policy's an abstractmethod and provide pass implementation to all other methods if not defined. - Fix state_batches=None (most Policies don't have internal states). * Cartpole tf learning. * Cartpole tf AND torch learning (in ~ same ts). * Cartpole tf AND torch learning (in ~ same ts). 2 * Cartpole tf (torch syntax-broken) learning (in ~ same ts). 3 * Cartpole tf AND torch learning (in ~ same ts). 4 * Cartpole tf AND torch learning (in ~ same ts). 5 * Cartpole tf AND torch learning (in ~ same ts). 6 * Cartpole tf AND torch learning (in ~ same ts). Pendulum tf learning. * WIP. * WIP. * SAC torch learning Pendulum. * WIP. * SAC torch and tf learning Pendulum and Cartpole after cleanup. * WIP. * LINT. * LINT. * SAC: Move policy.target_model to policy.device as well. * Fixes and cleanup. * Fix data-format of tf keras Conv2d layers (broken for some tf-versions which have data_format="channels_first" as default). * Fixes and LINT. * Fixes and LINT. * Fix and LINT. * WIP. * Test fixes and LINT. * Fixes and LINT. Co-authored-by: Sven Mika <sven@Svens-MacBook-Pro.local>
2020-04-15 13:25:16 +02:00
@override(TFActionDistribution)
def _build_sample_op(self):
return tf.random.uniform(self.output_shape)
[RLlib] SAC Torch (incl. Atari learning) (#7984) * Policy-classes cleanup and torch/tf unification. - Make Policy abstract. - Add `action_dist` to call to `extra_action_out_fn` (necessary for PPO torch). - Move some methods and vars to base Policy (from TFPolicy): num_state_tensors, ACTION_PROB, ACTION_LOGP and some more. * Fix `clip_action` import from Policy (should probably be moved into utils altogether). * - Move `is_recurrent()` and `num_state_tensors()` into TFPolicy (from DynamicTFPolicy). - Add config to all Policy c'tor calls (as 3rd arg after obs and action spaces). * Add `config` to c'tor call to TFPolicy. * Add missing `config` to c'tor call to TFPolicy in marvil_policy.py. * Fix test_rollout_worker.py::MockPolicy and BadPolicy classes (Policy base class is now abstract). * Fix LINT errors in Policy classes. * Implement StatefulPolicy abstract methods in test cases: test_multi_agent_env.py. * policy.py LINT errors. * Create a simple TestPolicy to sub-class from when testing Policies (reduces code in some test cases). * policy.py - Remove abstractmethod from `apply_gradients` and `compute_gradients` (these are not required iff `learn_on_batch` implemented). - Fix docstring of `num_state_tensors`. * Make QMIX torch Policy a child of TorchPolicy (instead of Policy). * QMixPolicy add empty implementations of abstract Policy methods. * Store Policy's config in self.config in base Policy c'tor. * - Make only compute_actions in base Policy's an abstractmethod and provide pass implementation to all other methods if not defined. - Fix state_batches=None (most Policies don't have internal states). * Cartpole tf learning. * Cartpole tf AND torch learning (in ~ same ts). * Cartpole tf AND torch learning (in ~ same ts). 2 * Cartpole tf (torch syntax-broken) learning (in ~ same ts). 3 * Cartpole tf AND torch learning (in ~ same ts). 4 * Cartpole tf AND torch learning (in ~ same ts). 5 * Cartpole tf AND torch learning (in ~ same ts). 6 * Cartpole tf AND torch learning (in ~ same ts). Pendulum tf learning. * WIP. * WIP. * SAC torch learning Pendulum. * WIP. * SAC torch and tf learning Pendulum and Cartpole after cleanup. * WIP. * LINT. * LINT. * SAC: Move policy.target_model to policy.device as well. * Fixes and cleanup. * Fix data-format of tf keras Conv2d layers (broken for some tf-versions which have data_format="channels_first" as default). * Fixes and LINT. * Fixes and LINT. * Fix and LINT. * WIP. * Test fixes and LINT. * Fixes and LINT. Co-authored-by: Sven Mika <sven@Svens-MacBook-Pro.local>
2020-04-15 13:25:16 +02:00
@override(ActionDistribution)
def logp(self, x):
return tf.zeros(self.output_shape)
class ModelCatalogTest(unittest.TestCase):
def tearDown(self):
ray.shutdown()
def test_gym_preprocessors(self):
p1 = ModelCatalog.get_preprocessor(gym.make("CartPole-v0"))
[carla] [rllib] Add support for carla nav planner and scenarios from paper (#1382) * wip * Sat Dec 30 15:07:28 PST 2017 * log video * video doesn't work well * scenario integration * Sat Dec 30 17:30:22 PST 2017 * Sat Dec 30 17:31:05 PST 2017 * Sat Dec 30 17:31:32 PST 2017 * Sat Dec 30 17:32:16 PST 2017 * Sat Dec 30 17:34:11 PST 2017 * Sat Dec 30 17:34:50 PST 2017 * Sat Dec 30 17:35:34 PST 2017 * Sat Dec 30 17:38:49 PST 2017 * Sat Dec 30 17:40:39 PST 2017 * Sat Dec 30 17:43:00 PST 2017 * Sat Dec 30 17:43:04 PST 2017 * Sat Dec 30 17:45:56 PST 2017 * Sat Dec 30 17:46:26 PST 2017 * Sat Dec 30 17:47:02 PST 2017 * Sat Dec 30 17:51:53 PST 2017 * Sat Dec 30 17:52:54 PST 2017 * Sat Dec 30 17:56:43 PST 2017 * Sat Dec 30 18:27:07 PST 2017 * Sat Dec 30 18:27:52 PST 2017 * fix train * Sat Dec 30 18:41:51 PST 2017 * Sat Dec 30 18:54:11 PST 2017 * Sat Dec 30 18:56:22 PST 2017 * Sat Dec 30 19:05:04 PST 2017 * Sat Dec 30 19:05:23 PST 2017 * Sat Dec 30 19:11:53 PST 2017 * Sat Dec 30 19:14:31 PST 2017 * Sat Dec 30 19:16:20 PST 2017 * Sat Dec 30 19:18:05 PST 2017 * Sat Dec 30 19:18:45 PST 2017 * Sat Dec 30 19:22:44 PST 2017 * Sat Dec 30 19:24:41 PST 2017 * Sat Dec 30 19:26:57 PST 2017 * Sat Dec 30 19:40:37 PST 2017 * wip models * reward bonus * test prep * Sun Dec 31 18:45:25 PST 2017 * Sun Dec 31 18:58:28 PST 2017 * Sun Dec 31 18:59:34 PST 2017 * Sun Dec 31 19:03:33 PST 2017 * Sun Dec 31 19:05:05 PST 2017 * Sun Dec 31 19:09:25 PST 2017 * fix train * kill * add tuple preprocessor * Sun Dec 31 20:38:33 PST 2017 * Sun Dec 31 22:51:24 PST 2017 * Sun Dec 31 23:14:13 PST 2017 * Sun Dec 31 23:16:04 PST 2017 * Mon Jan 1 00:08:35 PST 2018 * Mon Jan 1 00:10:48 PST 2018 * Mon Jan 1 01:08:31 PST 2018 * Mon Jan 1 14:45:44 PST 2018 * Mon Jan 1 14:54:56 PST 2018 * Mon Jan 1 17:29:29 PST 2018 * switch to euclidean dists * Mon Jan 1 17:39:27 PST 2018 * Mon Jan 1 17:41:47 PST 2018 * Mon Jan 1 17:44:18 PST 2018 * Mon Jan 1 17:47:09 PST 2018 * Mon Jan 1 20:31:02 PST 2018 * Mon Jan 1 20:39:33 PST 2018 * Mon Jan 1 20:40:55 PST 2018 * Mon Jan 1 20:55:06 PST 2018 * Mon Jan 1 21:05:52 PST 2018 * fix env path * merge richards fix * fix hash * Mon Jan 1 22:04:00 PST 2018 * Mon Jan 1 22:25:29 PST 2018 * Mon Jan 1 22:30:42 PST 2018 * simplified reward function * add framestack * add env configs * simplify speed reward * Tue Jan 2 17:36:15 PST 2018 * Tue Jan 2 17:49:16 PST 2018 * Tue Jan 2 18:10:38 PST 2018 * add lane keeping simple mode * Tue Jan 2 20:25:26 PST 2018 * Tue Jan 2 20:30:30 PST 2018 * Tue Jan 2 20:33:26 PST 2018 * Tue Jan 2 20:41:42 PST 2018 * ppo lane keep * simplify discrete actions * Tue Jan 2 21:41:05 PST 2018 * Tue Jan 2 21:49:03 PST 2018 * Tue Jan 2 22:12:23 PST 2018 * Tue Jan 2 22:14:42 PST 2018 * Tue Jan 2 22:20:59 PST 2018 * Tue Jan 2 22:23:43 PST 2018 * Tue Jan 2 22:26:27 PST 2018 * Tue Jan 2 22:27:20 PST 2018 * Tue Jan 2 22:44:00 PST 2018 * Tue Jan 2 22:57:58 PST 2018 * Tue Jan 2 23:08:51 PST 2018 * Tue Jan 2 23:11:32 PST 2018 * update dqn reward * Thu Jan 4 12:29:40 PST 2018 * Thu Jan 4 12:30:26 PST 2018 * Update train_dqn.py * fix
2018-01-05 21:32:41 -08:00
self.assertEqual(type(p1), NoPreprocessor)
p2 = ModelCatalog.get_preprocessor(gym.make("FrozenLake-v0"))
[carla] [rllib] Add support for carla nav planner and scenarios from paper (#1382) * wip * Sat Dec 30 15:07:28 PST 2017 * log video * video doesn't work well * scenario integration * Sat Dec 30 17:30:22 PST 2017 * Sat Dec 30 17:31:05 PST 2017 * Sat Dec 30 17:31:32 PST 2017 * Sat Dec 30 17:32:16 PST 2017 * Sat Dec 30 17:34:11 PST 2017 * Sat Dec 30 17:34:50 PST 2017 * Sat Dec 30 17:35:34 PST 2017 * Sat Dec 30 17:38:49 PST 2017 * Sat Dec 30 17:40:39 PST 2017 * Sat Dec 30 17:43:00 PST 2017 * Sat Dec 30 17:43:04 PST 2017 * Sat Dec 30 17:45:56 PST 2017 * Sat Dec 30 17:46:26 PST 2017 * Sat Dec 30 17:47:02 PST 2017 * Sat Dec 30 17:51:53 PST 2017 * Sat Dec 30 17:52:54 PST 2017 * Sat Dec 30 17:56:43 PST 2017 * Sat Dec 30 18:27:07 PST 2017 * Sat Dec 30 18:27:52 PST 2017 * fix train * Sat Dec 30 18:41:51 PST 2017 * Sat Dec 30 18:54:11 PST 2017 * Sat Dec 30 18:56:22 PST 2017 * Sat Dec 30 19:05:04 PST 2017 * Sat Dec 30 19:05:23 PST 2017 * Sat Dec 30 19:11:53 PST 2017 * Sat Dec 30 19:14:31 PST 2017 * Sat Dec 30 19:16:20 PST 2017 * Sat Dec 30 19:18:05 PST 2017 * Sat Dec 30 19:18:45 PST 2017 * Sat Dec 30 19:22:44 PST 2017 * Sat Dec 30 19:24:41 PST 2017 * Sat Dec 30 19:26:57 PST 2017 * Sat Dec 30 19:40:37 PST 2017 * wip models * reward bonus * test prep * Sun Dec 31 18:45:25 PST 2017 * Sun Dec 31 18:58:28 PST 2017 * Sun Dec 31 18:59:34 PST 2017 * Sun Dec 31 19:03:33 PST 2017 * Sun Dec 31 19:05:05 PST 2017 * Sun Dec 31 19:09:25 PST 2017 * fix train * kill * add tuple preprocessor * Sun Dec 31 20:38:33 PST 2017 * Sun Dec 31 22:51:24 PST 2017 * Sun Dec 31 23:14:13 PST 2017 * Sun Dec 31 23:16:04 PST 2017 * Mon Jan 1 00:08:35 PST 2018 * Mon Jan 1 00:10:48 PST 2018 * Mon Jan 1 01:08:31 PST 2018 * Mon Jan 1 14:45:44 PST 2018 * Mon Jan 1 14:54:56 PST 2018 * Mon Jan 1 17:29:29 PST 2018 * switch to euclidean dists * Mon Jan 1 17:39:27 PST 2018 * Mon Jan 1 17:41:47 PST 2018 * Mon Jan 1 17:44:18 PST 2018 * Mon Jan 1 17:47:09 PST 2018 * Mon Jan 1 20:31:02 PST 2018 * Mon Jan 1 20:39:33 PST 2018 * Mon Jan 1 20:40:55 PST 2018 * Mon Jan 1 20:55:06 PST 2018 * Mon Jan 1 21:05:52 PST 2018 * fix env path * merge richards fix * fix hash * Mon Jan 1 22:04:00 PST 2018 * Mon Jan 1 22:25:29 PST 2018 * Mon Jan 1 22:30:42 PST 2018 * simplified reward function * add framestack * add env configs * simplify speed reward * Tue Jan 2 17:36:15 PST 2018 * Tue Jan 2 17:49:16 PST 2018 * Tue Jan 2 18:10:38 PST 2018 * add lane keeping simple mode * Tue Jan 2 20:25:26 PST 2018 * Tue Jan 2 20:30:30 PST 2018 * Tue Jan 2 20:33:26 PST 2018 * Tue Jan 2 20:41:42 PST 2018 * ppo lane keep * simplify discrete actions * Tue Jan 2 21:41:05 PST 2018 * Tue Jan 2 21:49:03 PST 2018 * Tue Jan 2 22:12:23 PST 2018 * Tue Jan 2 22:14:42 PST 2018 * Tue Jan 2 22:20:59 PST 2018 * Tue Jan 2 22:23:43 PST 2018 * Tue Jan 2 22:26:27 PST 2018 * Tue Jan 2 22:27:20 PST 2018 * Tue Jan 2 22:44:00 PST 2018 * Tue Jan 2 22:57:58 PST 2018 * Tue Jan 2 23:08:51 PST 2018 * Tue Jan 2 23:11:32 PST 2018 * update dqn reward * Thu Jan 4 12:29:40 PST 2018 * Thu Jan 4 12:30:26 PST 2018 * Update train_dqn.py * fix
2018-01-05 21:32:41 -08:00
self.assertEqual(type(p2), OneHotPreprocessor)
def test_tuple_preprocessor(self):
ray.init(object_store_memory=1000 * 1024 * 1024)
[carla] [rllib] Add support for carla nav planner and scenarios from paper (#1382) * wip * Sat Dec 30 15:07:28 PST 2017 * log video * video doesn't work well * scenario integration * Sat Dec 30 17:30:22 PST 2017 * Sat Dec 30 17:31:05 PST 2017 * Sat Dec 30 17:31:32 PST 2017 * Sat Dec 30 17:32:16 PST 2017 * Sat Dec 30 17:34:11 PST 2017 * Sat Dec 30 17:34:50 PST 2017 * Sat Dec 30 17:35:34 PST 2017 * Sat Dec 30 17:38:49 PST 2017 * Sat Dec 30 17:40:39 PST 2017 * Sat Dec 30 17:43:00 PST 2017 * Sat Dec 30 17:43:04 PST 2017 * Sat Dec 30 17:45:56 PST 2017 * Sat Dec 30 17:46:26 PST 2017 * Sat Dec 30 17:47:02 PST 2017 * Sat Dec 30 17:51:53 PST 2017 * Sat Dec 30 17:52:54 PST 2017 * Sat Dec 30 17:56:43 PST 2017 * Sat Dec 30 18:27:07 PST 2017 * Sat Dec 30 18:27:52 PST 2017 * fix train * Sat Dec 30 18:41:51 PST 2017 * Sat Dec 30 18:54:11 PST 2017 * Sat Dec 30 18:56:22 PST 2017 * Sat Dec 30 19:05:04 PST 2017 * Sat Dec 30 19:05:23 PST 2017 * Sat Dec 30 19:11:53 PST 2017 * Sat Dec 30 19:14:31 PST 2017 * Sat Dec 30 19:16:20 PST 2017 * Sat Dec 30 19:18:05 PST 2017 * Sat Dec 30 19:18:45 PST 2017 * Sat Dec 30 19:22:44 PST 2017 * Sat Dec 30 19:24:41 PST 2017 * Sat Dec 30 19:26:57 PST 2017 * Sat Dec 30 19:40:37 PST 2017 * wip models * reward bonus * test prep * Sun Dec 31 18:45:25 PST 2017 * Sun Dec 31 18:58:28 PST 2017 * Sun Dec 31 18:59:34 PST 2017 * Sun Dec 31 19:03:33 PST 2017 * Sun Dec 31 19:05:05 PST 2017 * Sun Dec 31 19:09:25 PST 2017 * fix train * kill * add tuple preprocessor * Sun Dec 31 20:38:33 PST 2017 * Sun Dec 31 22:51:24 PST 2017 * Sun Dec 31 23:14:13 PST 2017 * Sun Dec 31 23:16:04 PST 2017 * Mon Jan 1 00:08:35 PST 2018 * Mon Jan 1 00:10:48 PST 2018 * Mon Jan 1 01:08:31 PST 2018 * Mon Jan 1 14:45:44 PST 2018 * Mon Jan 1 14:54:56 PST 2018 * Mon Jan 1 17:29:29 PST 2018 * switch to euclidean dists * Mon Jan 1 17:39:27 PST 2018 * Mon Jan 1 17:41:47 PST 2018 * Mon Jan 1 17:44:18 PST 2018 * Mon Jan 1 17:47:09 PST 2018 * Mon Jan 1 20:31:02 PST 2018 * Mon Jan 1 20:39:33 PST 2018 * Mon Jan 1 20:40:55 PST 2018 * Mon Jan 1 20:55:06 PST 2018 * Mon Jan 1 21:05:52 PST 2018 * fix env path * merge richards fix * fix hash * Mon Jan 1 22:04:00 PST 2018 * Mon Jan 1 22:25:29 PST 2018 * Mon Jan 1 22:30:42 PST 2018 * simplified reward function * add framestack * add env configs * simplify speed reward * Tue Jan 2 17:36:15 PST 2018 * Tue Jan 2 17:49:16 PST 2018 * Tue Jan 2 18:10:38 PST 2018 * add lane keeping simple mode * Tue Jan 2 20:25:26 PST 2018 * Tue Jan 2 20:30:30 PST 2018 * Tue Jan 2 20:33:26 PST 2018 * Tue Jan 2 20:41:42 PST 2018 * ppo lane keep * simplify discrete actions * Tue Jan 2 21:41:05 PST 2018 * Tue Jan 2 21:49:03 PST 2018 * Tue Jan 2 22:12:23 PST 2018 * Tue Jan 2 22:14:42 PST 2018 * Tue Jan 2 22:20:59 PST 2018 * Tue Jan 2 22:23:43 PST 2018 * Tue Jan 2 22:26:27 PST 2018 * Tue Jan 2 22:27:20 PST 2018 * Tue Jan 2 22:44:00 PST 2018 * Tue Jan 2 22:57:58 PST 2018 * Tue Jan 2 23:08:51 PST 2018 * Tue Jan 2 23:11:32 PST 2018 * update dqn reward * Thu Jan 4 12:29:40 PST 2018 * Thu Jan 4 12:30:26 PST 2018 * Update train_dqn.py * fix
2018-01-05 21:32:41 -08:00
class TupleEnv:
[carla] [rllib] Add support for carla nav planner and scenarios from paper (#1382) * wip * Sat Dec 30 15:07:28 PST 2017 * log video * video doesn't work well * scenario integration * Sat Dec 30 17:30:22 PST 2017 * Sat Dec 30 17:31:05 PST 2017 * Sat Dec 30 17:31:32 PST 2017 * Sat Dec 30 17:32:16 PST 2017 * Sat Dec 30 17:34:11 PST 2017 * Sat Dec 30 17:34:50 PST 2017 * Sat Dec 30 17:35:34 PST 2017 * Sat Dec 30 17:38:49 PST 2017 * Sat Dec 30 17:40:39 PST 2017 * Sat Dec 30 17:43:00 PST 2017 * Sat Dec 30 17:43:04 PST 2017 * Sat Dec 30 17:45:56 PST 2017 * Sat Dec 30 17:46:26 PST 2017 * Sat Dec 30 17:47:02 PST 2017 * Sat Dec 30 17:51:53 PST 2017 * Sat Dec 30 17:52:54 PST 2017 * Sat Dec 30 17:56:43 PST 2017 * Sat Dec 30 18:27:07 PST 2017 * Sat Dec 30 18:27:52 PST 2017 * fix train * Sat Dec 30 18:41:51 PST 2017 * Sat Dec 30 18:54:11 PST 2017 * Sat Dec 30 18:56:22 PST 2017 * Sat Dec 30 19:05:04 PST 2017 * Sat Dec 30 19:05:23 PST 2017 * Sat Dec 30 19:11:53 PST 2017 * Sat Dec 30 19:14:31 PST 2017 * Sat Dec 30 19:16:20 PST 2017 * Sat Dec 30 19:18:05 PST 2017 * Sat Dec 30 19:18:45 PST 2017 * Sat Dec 30 19:22:44 PST 2017 * Sat Dec 30 19:24:41 PST 2017 * Sat Dec 30 19:26:57 PST 2017 * Sat Dec 30 19:40:37 PST 2017 * wip models * reward bonus * test prep * Sun Dec 31 18:45:25 PST 2017 * Sun Dec 31 18:58:28 PST 2017 * Sun Dec 31 18:59:34 PST 2017 * Sun Dec 31 19:03:33 PST 2017 * Sun Dec 31 19:05:05 PST 2017 * Sun Dec 31 19:09:25 PST 2017 * fix train * kill * add tuple preprocessor * Sun Dec 31 20:38:33 PST 2017 * Sun Dec 31 22:51:24 PST 2017 * Sun Dec 31 23:14:13 PST 2017 * Sun Dec 31 23:16:04 PST 2017 * Mon Jan 1 00:08:35 PST 2018 * Mon Jan 1 00:10:48 PST 2018 * Mon Jan 1 01:08:31 PST 2018 * Mon Jan 1 14:45:44 PST 2018 * Mon Jan 1 14:54:56 PST 2018 * Mon Jan 1 17:29:29 PST 2018 * switch to euclidean dists * Mon Jan 1 17:39:27 PST 2018 * Mon Jan 1 17:41:47 PST 2018 * Mon Jan 1 17:44:18 PST 2018 * Mon Jan 1 17:47:09 PST 2018 * Mon Jan 1 20:31:02 PST 2018 * Mon Jan 1 20:39:33 PST 2018 * Mon Jan 1 20:40:55 PST 2018 * Mon Jan 1 20:55:06 PST 2018 * Mon Jan 1 21:05:52 PST 2018 * fix env path * merge richards fix * fix hash * Mon Jan 1 22:04:00 PST 2018 * Mon Jan 1 22:25:29 PST 2018 * Mon Jan 1 22:30:42 PST 2018 * simplified reward function * add framestack * add env configs * simplify speed reward * Tue Jan 2 17:36:15 PST 2018 * Tue Jan 2 17:49:16 PST 2018 * Tue Jan 2 18:10:38 PST 2018 * add lane keeping simple mode * Tue Jan 2 20:25:26 PST 2018 * Tue Jan 2 20:30:30 PST 2018 * Tue Jan 2 20:33:26 PST 2018 * Tue Jan 2 20:41:42 PST 2018 * ppo lane keep * simplify discrete actions * Tue Jan 2 21:41:05 PST 2018 * Tue Jan 2 21:49:03 PST 2018 * Tue Jan 2 22:12:23 PST 2018 * Tue Jan 2 22:14:42 PST 2018 * Tue Jan 2 22:20:59 PST 2018 * Tue Jan 2 22:23:43 PST 2018 * Tue Jan 2 22:26:27 PST 2018 * Tue Jan 2 22:27:20 PST 2018 * Tue Jan 2 22:44:00 PST 2018 * Tue Jan 2 22:57:58 PST 2018 * Tue Jan 2 23:08:51 PST 2018 * Tue Jan 2 23:11:32 PST 2018 * update dqn reward * Thu Jan 4 12:29:40 PST 2018 * Thu Jan 4 12:30:26 PST 2018 * Update train_dqn.py * fix
2018-01-05 21:32:41 -08:00
def __init__(self):
self.observation_space = Tuple(
[Discrete(5),
Box(0, 5, shape=(3, ), dtype=np.float32)])
p1 = ModelCatalog.get_preprocessor(TupleEnv())
self.assertEqual(p1.shape, (8, ))
[carla] [rllib] Add support for carla nav planner and scenarios from paper (#1382) * wip * Sat Dec 30 15:07:28 PST 2017 * log video * video doesn't work well * scenario integration * Sat Dec 30 17:30:22 PST 2017 * Sat Dec 30 17:31:05 PST 2017 * Sat Dec 30 17:31:32 PST 2017 * Sat Dec 30 17:32:16 PST 2017 * Sat Dec 30 17:34:11 PST 2017 * Sat Dec 30 17:34:50 PST 2017 * Sat Dec 30 17:35:34 PST 2017 * Sat Dec 30 17:38:49 PST 2017 * Sat Dec 30 17:40:39 PST 2017 * Sat Dec 30 17:43:00 PST 2017 * Sat Dec 30 17:43:04 PST 2017 * Sat Dec 30 17:45:56 PST 2017 * Sat Dec 30 17:46:26 PST 2017 * Sat Dec 30 17:47:02 PST 2017 * Sat Dec 30 17:51:53 PST 2017 * Sat Dec 30 17:52:54 PST 2017 * Sat Dec 30 17:56:43 PST 2017 * Sat Dec 30 18:27:07 PST 2017 * Sat Dec 30 18:27:52 PST 2017 * fix train * Sat Dec 30 18:41:51 PST 2017 * Sat Dec 30 18:54:11 PST 2017 * Sat Dec 30 18:56:22 PST 2017 * Sat Dec 30 19:05:04 PST 2017 * Sat Dec 30 19:05:23 PST 2017 * Sat Dec 30 19:11:53 PST 2017 * Sat Dec 30 19:14:31 PST 2017 * Sat Dec 30 19:16:20 PST 2017 * Sat Dec 30 19:18:05 PST 2017 * Sat Dec 30 19:18:45 PST 2017 * Sat Dec 30 19:22:44 PST 2017 * Sat Dec 30 19:24:41 PST 2017 * Sat Dec 30 19:26:57 PST 2017 * Sat Dec 30 19:40:37 PST 2017 * wip models * reward bonus * test prep * Sun Dec 31 18:45:25 PST 2017 * Sun Dec 31 18:58:28 PST 2017 * Sun Dec 31 18:59:34 PST 2017 * Sun Dec 31 19:03:33 PST 2017 * Sun Dec 31 19:05:05 PST 2017 * Sun Dec 31 19:09:25 PST 2017 * fix train * kill * add tuple preprocessor * Sun Dec 31 20:38:33 PST 2017 * Sun Dec 31 22:51:24 PST 2017 * Sun Dec 31 23:14:13 PST 2017 * Sun Dec 31 23:16:04 PST 2017 * Mon Jan 1 00:08:35 PST 2018 * Mon Jan 1 00:10:48 PST 2018 * Mon Jan 1 01:08:31 PST 2018 * Mon Jan 1 14:45:44 PST 2018 * Mon Jan 1 14:54:56 PST 2018 * Mon Jan 1 17:29:29 PST 2018 * switch to euclidean dists * Mon Jan 1 17:39:27 PST 2018 * Mon Jan 1 17:41:47 PST 2018 * Mon Jan 1 17:44:18 PST 2018 * Mon Jan 1 17:47:09 PST 2018 * Mon Jan 1 20:31:02 PST 2018 * Mon Jan 1 20:39:33 PST 2018 * Mon Jan 1 20:40:55 PST 2018 * Mon Jan 1 20:55:06 PST 2018 * Mon Jan 1 21:05:52 PST 2018 * fix env path * merge richards fix * fix hash * Mon Jan 1 22:04:00 PST 2018 * Mon Jan 1 22:25:29 PST 2018 * Mon Jan 1 22:30:42 PST 2018 * simplified reward function * add framestack * add env configs * simplify speed reward * Tue Jan 2 17:36:15 PST 2018 * Tue Jan 2 17:49:16 PST 2018 * Tue Jan 2 18:10:38 PST 2018 * add lane keeping simple mode * Tue Jan 2 20:25:26 PST 2018 * Tue Jan 2 20:30:30 PST 2018 * Tue Jan 2 20:33:26 PST 2018 * Tue Jan 2 20:41:42 PST 2018 * ppo lane keep * simplify discrete actions * Tue Jan 2 21:41:05 PST 2018 * Tue Jan 2 21:49:03 PST 2018 * Tue Jan 2 22:12:23 PST 2018 * Tue Jan 2 22:14:42 PST 2018 * Tue Jan 2 22:20:59 PST 2018 * Tue Jan 2 22:23:43 PST 2018 * Tue Jan 2 22:26:27 PST 2018 * Tue Jan 2 22:27:20 PST 2018 * Tue Jan 2 22:44:00 PST 2018 * Tue Jan 2 22:57:58 PST 2018 * Tue Jan 2 23:08:51 PST 2018 * Tue Jan 2 23:11:32 PST 2018 * update dqn reward * Thu Jan 4 12:29:40 PST 2018 * Thu Jan 4 12:30:26 PST 2018 * Update train_dqn.py * fix
2018-01-05 21:32:41 -08:00
self.assertEqual(
list(p1.transform((0, np.array([1, 2, 3])))),
[carla] [rllib] Add support for carla nav planner and scenarios from paper (#1382) * wip * Sat Dec 30 15:07:28 PST 2017 * log video * video doesn't work well * scenario integration * Sat Dec 30 17:30:22 PST 2017 * Sat Dec 30 17:31:05 PST 2017 * Sat Dec 30 17:31:32 PST 2017 * Sat Dec 30 17:32:16 PST 2017 * Sat Dec 30 17:34:11 PST 2017 * Sat Dec 30 17:34:50 PST 2017 * Sat Dec 30 17:35:34 PST 2017 * Sat Dec 30 17:38:49 PST 2017 * Sat Dec 30 17:40:39 PST 2017 * Sat Dec 30 17:43:00 PST 2017 * Sat Dec 30 17:43:04 PST 2017 * Sat Dec 30 17:45:56 PST 2017 * Sat Dec 30 17:46:26 PST 2017 * Sat Dec 30 17:47:02 PST 2017 * Sat Dec 30 17:51:53 PST 2017 * Sat Dec 30 17:52:54 PST 2017 * Sat Dec 30 17:56:43 PST 2017 * Sat Dec 30 18:27:07 PST 2017 * Sat Dec 30 18:27:52 PST 2017 * fix train * Sat Dec 30 18:41:51 PST 2017 * Sat Dec 30 18:54:11 PST 2017 * Sat Dec 30 18:56:22 PST 2017 * Sat Dec 30 19:05:04 PST 2017 * Sat Dec 30 19:05:23 PST 2017 * Sat Dec 30 19:11:53 PST 2017 * Sat Dec 30 19:14:31 PST 2017 * Sat Dec 30 19:16:20 PST 2017 * Sat Dec 30 19:18:05 PST 2017 * Sat Dec 30 19:18:45 PST 2017 * Sat Dec 30 19:22:44 PST 2017 * Sat Dec 30 19:24:41 PST 2017 * Sat Dec 30 19:26:57 PST 2017 * Sat Dec 30 19:40:37 PST 2017 * wip models * reward bonus * test prep * Sun Dec 31 18:45:25 PST 2017 * Sun Dec 31 18:58:28 PST 2017 * Sun Dec 31 18:59:34 PST 2017 * Sun Dec 31 19:03:33 PST 2017 * Sun Dec 31 19:05:05 PST 2017 * Sun Dec 31 19:09:25 PST 2017 * fix train * kill * add tuple preprocessor * Sun Dec 31 20:38:33 PST 2017 * Sun Dec 31 22:51:24 PST 2017 * Sun Dec 31 23:14:13 PST 2017 * Sun Dec 31 23:16:04 PST 2017 * Mon Jan 1 00:08:35 PST 2018 * Mon Jan 1 00:10:48 PST 2018 * Mon Jan 1 01:08:31 PST 2018 * Mon Jan 1 14:45:44 PST 2018 * Mon Jan 1 14:54:56 PST 2018 * Mon Jan 1 17:29:29 PST 2018 * switch to euclidean dists * Mon Jan 1 17:39:27 PST 2018 * Mon Jan 1 17:41:47 PST 2018 * Mon Jan 1 17:44:18 PST 2018 * Mon Jan 1 17:47:09 PST 2018 * Mon Jan 1 20:31:02 PST 2018 * Mon Jan 1 20:39:33 PST 2018 * Mon Jan 1 20:40:55 PST 2018 * Mon Jan 1 20:55:06 PST 2018 * Mon Jan 1 21:05:52 PST 2018 * fix env path * merge richards fix * fix hash * Mon Jan 1 22:04:00 PST 2018 * Mon Jan 1 22:25:29 PST 2018 * Mon Jan 1 22:30:42 PST 2018 * simplified reward function * add framestack * add env configs * simplify speed reward * Tue Jan 2 17:36:15 PST 2018 * Tue Jan 2 17:49:16 PST 2018 * Tue Jan 2 18:10:38 PST 2018 * add lane keeping simple mode * Tue Jan 2 20:25:26 PST 2018 * Tue Jan 2 20:30:30 PST 2018 * Tue Jan 2 20:33:26 PST 2018 * Tue Jan 2 20:41:42 PST 2018 * ppo lane keep * simplify discrete actions * Tue Jan 2 21:41:05 PST 2018 * Tue Jan 2 21:49:03 PST 2018 * Tue Jan 2 22:12:23 PST 2018 * Tue Jan 2 22:14:42 PST 2018 * Tue Jan 2 22:20:59 PST 2018 * Tue Jan 2 22:23:43 PST 2018 * Tue Jan 2 22:26:27 PST 2018 * Tue Jan 2 22:27:20 PST 2018 * Tue Jan 2 22:44:00 PST 2018 * Tue Jan 2 22:57:58 PST 2018 * Tue Jan 2 23:08:51 PST 2018 * Tue Jan 2 23:11:32 PST 2018 * update dqn reward * Thu Jan 4 12:29:40 PST 2018 * Thu Jan 4 12:30:26 PST 2018 * Update train_dqn.py * fix
2018-01-05 21:32:41 -08:00
[float(x) for x in [1, 0, 0, 0, 0, 1, 2, 3]])
def test_custom_preprocessor(self):
ray.init(object_store_memory=1000 * 1024 * 1024)
ModelCatalog.register_custom_preprocessor("foo", CustomPreprocessor)
ModelCatalog.register_custom_preprocessor("bar", CustomPreprocessor2)
env = gym.make("CartPole-v0")
p1 = ModelCatalog.get_preprocessor(env, {"custom_preprocessor": "foo"})
[carla] [rllib] Add support for carla nav planner and scenarios from paper (#1382) * wip * Sat Dec 30 15:07:28 PST 2017 * log video * video doesn't work well * scenario integration * Sat Dec 30 17:30:22 PST 2017 * Sat Dec 30 17:31:05 PST 2017 * Sat Dec 30 17:31:32 PST 2017 * Sat Dec 30 17:32:16 PST 2017 * Sat Dec 30 17:34:11 PST 2017 * Sat Dec 30 17:34:50 PST 2017 * Sat Dec 30 17:35:34 PST 2017 * Sat Dec 30 17:38:49 PST 2017 * Sat Dec 30 17:40:39 PST 2017 * Sat Dec 30 17:43:00 PST 2017 * Sat Dec 30 17:43:04 PST 2017 * Sat Dec 30 17:45:56 PST 2017 * Sat Dec 30 17:46:26 PST 2017 * Sat Dec 30 17:47:02 PST 2017 * Sat Dec 30 17:51:53 PST 2017 * Sat Dec 30 17:52:54 PST 2017 * Sat Dec 30 17:56:43 PST 2017 * Sat Dec 30 18:27:07 PST 2017 * Sat Dec 30 18:27:52 PST 2017 * fix train * Sat Dec 30 18:41:51 PST 2017 * Sat Dec 30 18:54:11 PST 2017 * Sat Dec 30 18:56:22 PST 2017 * Sat Dec 30 19:05:04 PST 2017 * Sat Dec 30 19:05:23 PST 2017 * Sat Dec 30 19:11:53 PST 2017 * Sat Dec 30 19:14:31 PST 2017 * Sat Dec 30 19:16:20 PST 2017 * Sat Dec 30 19:18:05 PST 2017 * Sat Dec 30 19:18:45 PST 2017 * Sat Dec 30 19:22:44 PST 2017 * Sat Dec 30 19:24:41 PST 2017 * Sat Dec 30 19:26:57 PST 2017 * Sat Dec 30 19:40:37 PST 2017 * wip models * reward bonus * test prep * Sun Dec 31 18:45:25 PST 2017 * Sun Dec 31 18:58:28 PST 2017 * Sun Dec 31 18:59:34 PST 2017 * Sun Dec 31 19:03:33 PST 2017 * Sun Dec 31 19:05:05 PST 2017 * Sun Dec 31 19:09:25 PST 2017 * fix train * kill * add tuple preprocessor * Sun Dec 31 20:38:33 PST 2017 * Sun Dec 31 22:51:24 PST 2017 * Sun Dec 31 23:14:13 PST 2017 * Sun Dec 31 23:16:04 PST 2017 * Mon Jan 1 00:08:35 PST 2018 * Mon Jan 1 00:10:48 PST 2018 * Mon Jan 1 01:08:31 PST 2018 * Mon Jan 1 14:45:44 PST 2018 * Mon Jan 1 14:54:56 PST 2018 * Mon Jan 1 17:29:29 PST 2018 * switch to euclidean dists * Mon Jan 1 17:39:27 PST 2018 * Mon Jan 1 17:41:47 PST 2018 * Mon Jan 1 17:44:18 PST 2018 * Mon Jan 1 17:47:09 PST 2018 * Mon Jan 1 20:31:02 PST 2018 * Mon Jan 1 20:39:33 PST 2018 * Mon Jan 1 20:40:55 PST 2018 * Mon Jan 1 20:55:06 PST 2018 * Mon Jan 1 21:05:52 PST 2018 * fix env path * merge richards fix * fix hash * Mon Jan 1 22:04:00 PST 2018 * Mon Jan 1 22:25:29 PST 2018 * Mon Jan 1 22:30:42 PST 2018 * simplified reward function * add framestack * add env configs * simplify speed reward * Tue Jan 2 17:36:15 PST 2018 * Tue Jan 2 17:49:16 PST 2018 * Tue Jan 2 18:10:38 PST 2018 * add lane keeping simple mode * Tue Jan 2 20:25:26 PST 2018 * Tue Jan 2 20:30:30 PST 2018 * Tue Jan 2 20:33:26 PST 2018 * Tue Jan 2 20:41:42 PST 2018 * ppo lane keep * simplify discrete actions * Tue Jan 2 21:41:05 PST 2018 * Tue Jan 2 21:49:03 PST 2018 * Tue Jan 2 22:12:23 PST 2018 * Tue Jan 2 22:14:42 PST 2018 * Tue Jan 2 22:20:59 PST 2018 * Tue Jan 2 22:23:43 PST 2018 * Tue Jan 2 22:26:27 PST 2018 * Tue Jan 2 22:27:20 PST 2018 * Tue Jan 2 22:44:00 PST 2018 * Tue Jan 2 22:57:58 PST 2018 * Tue Jan 2 23:08:51 PST 2018 * Tue Jan 2 23:11:32 PST 2018 * update dqn reward * Thu Jan 4 12:29:40 PST 2018 * Thu Jan 4 12:30:26 PST 2018 * Update train_dqn.py * fix
2018-01-05 21:32:41 -08:00
self.assertEqual(str(type(p1)), str(CustomPreprocessor))
p2 = ModelCatalog.get_preprocessor(env, {"custom_preprocessor": "bar"})
[carla] [rllib] Add support for carla nav planner and scenarios from paper (#1382) * wip * Sat Dec 30 15:07:28 PST 2017 * log video * video doesn't work well * scenario integration * Sat Dec 30 17:30:22 PST 2017 * Sat Dec 30 17:31:05 PST 2017 * Sat Dec 30 17:31:32 PST 2017 * Sat Dec 30 17:32:16 PST 2017 * Sat Dec 30 17:34:11 PST 2017 * Sat Dec 30 17:34:50 PST 2017 * Sat Dec 30 17:35:34 PST 2017 * Sat Dec 30 17:38:49 PST 2017 * Sat Dec 30 17:40:39 PST 2017 * Sat Dec 30 17:43:00 PST 2017 * Sat Dec 30 17:43:04 PST 2017 * Sat Dec 30 17:45:56 PST 2017 * Sat Dec 30 17:46:26 PST 2017 * Sat Dec 30 17:47:02 PST 2017 * Sat Dec 30 17:51:53 PST 2017 * Sat Dec 30 17:52:54 PST 2017 * Sat Dec 30 17:56:43 PST 2017 * Sat Dec 30 18:27:07 PST 2017 * Sat Dec 30 18:27:52 PST 2017 * fix train * Sat Dec 30 18:41:51 PST 2017 * Sat Dec 30 18:54:11 PST 2017 * Sat Dec 30 18:56:22 PST 2017 * Sat Dec 30 19:05:04 PST 2017 * Sat Dec 30 19:05:23 PST 2017 * Sat Dec 30 19:11:53 PST 2017 * Sat Dec 30 19:14:31 PST 2017 * Sat Dec 30 19:16:20 PST 2017 * Sat Dec 30 19:18:05 PST 2017 * Sat Dec 30 19:18:45 PST 2017 * Sat Dec 30 19:22:44 PST 2017 * Sat Dec 30 19:24:41 PST 2017 * Sat Dec 30 19:26:57 PST 2017 * Sat Dec 30 19:40:37 PST 2017 * wip models * reward bonus * test prep * Sun Dec 31 18:45:25 PST 2017 * Sun Dec 31 18:58:28 PST 2017 * Sun Dec 31 18:59:34 PST 2017 * Sun Dec 31 19:03:33 PST 2017 * Sun Dec 31 19:05:05 PST 2017 * Sun Dec 31 19:09:25 PST 2017 * fix train * kill * add tuple preprocessor * Sun Dec 31 20:38:33 PST 2017 * Sun Dec 31 22:51:24 PST 2017 * Sun Dec 31 23:14:13 PST 2017 * Sun Dec 31 23:16:04 PST 2017 * Mon Jan 1 00:08:35 PST 2018 * Mon Jan 1 00:10:48 PST 2018 * Mon Jan 1 01:08:31 PST 2018 * Mon Jan 1 14:45:44 PST 2018 * Mon Jan 1 14:54:56 PST 2018 * Mon Jan 1 17:29:29 PST 2018 * switch to euclidean dists * Mon Jan 1 17:39:27 PST 2018 * Mon Jan 1 17:41:47 PST 2018 * Mon Jan 1 17:44:18 PST 2018 * Mon Jan 1 17:47:09 PST 2018 * Mon Jan 1 20:31:02 PST 2018 * Mon Jan 1 20:39:33 PST 2018 * Mon Jan 1 20:40:55 PST 2018 * Mon Jan 1 20:55:06 PST 2018 * Mon Jan 1 21:05:52 PST 2018 * fix env path * merge richards fix * fix hash * Mon Jan 1 22:04:00 PST 2018 * Mon Jan 1 22:25:29 PST 2018 * Mon Jan 1 22:30:42 PST 2018 * simplified reward function * add framestack * add env configs * simplify speed reward * Tue Jan 2 17:36:15 PST 2018 * Tue Jan 2 17:49:16 PST 2018 * Tue Jan 2 18:10:38 PST 2018 * add lane keeping simple mode * Tue Jan 2 20:25:26 PST 2018 * Tue Jan 2 20:30:30 PST 2018 * Tue Jan 2 20:33:26 PST 2018 * Tue Jan 2 20:41:42 PST 2018 * ppo lane keep * simplify discrete actions * Tue Jan 2 21:41:05 PST 2018 * Tue Jan 2 21:49:03 PST 2018 * Tue Jan 2 22:12:23 PST 2018 * Tue Jan 2 22:14:42 PST 2018 * Tue Jan 2 22:20:59 PST 2018 * Tue Jan 2 22:23:43 PST 2018 * Tue Jan 2 22:26:27 PST 2018 * Tue Jan 2 22:27:20 PST 2018 * Tue Jan 2 22:44:00 PST 2018 * Tue Jan 2 22:57:58 PST 2018 * Tue Jan 2 23:08:51 PST 2018 * Tue Jan 2 23:11:32 PST 2018 * update dqn reward * Thu Jan 4 12:29:40 PST 2018 * Thu Jan 4 12:30:26 PST 2018 * Update train_dqn.py * fix
2018-01-05 21:32:41 -08:00
self.assertEqual(str(type(p2)), str(CustomPreprocessor2))
p3 = ModelCatalog.get_preprocessor(env)
[carla] [rllib] Add support for carla nav planner and scenarios from paper (#1382) * wip * Sat Dec 30 15:07:28 PST 2017 * log video * video doesn't work well * scenario integration * Sat Dec 30 17:30:22 PST 2017 * Sat Dec 30 17:31:05 PST 2017 * Sat Dec 30 17:31:32 PST 2017 * Sat Dec 30 17:32:16 PST 2017 * Sat Dec 30 17:34:11 PST 2017 * Sat Dec 30 17:34:50 PST 2017 * Sat Dec 30 17:35:34 PST 2017 * Sat Dec 30 17:38:49 PST 2017 * Sat Dec 30 17:40:39 PST 2017 * Sat Dec 30 17:43:00 PST 2017 * Sat Dec 30 17:43:04 PST 2017 * Sat Dec 30 17:45:56 PST 2017 * Sat Dec 30 17:46:26 PST 2017 * Sat Dec 30 17:47:02 PST 2017 * Sat Dec 30 17:51:53 PST 2017 * Sat Dec 30 17:52:54 PST 2017 * Sat Dec 30 17:56:43 PST 2017 * Sat Dec 30 18:27:07 PST 2017 * Sat Dec 30 18:27:52 PST 2017 * fix train * Sat Dec 30 18:41:51 PST 2017 * Sat Dec 30 18:54:11 PST 2017 * Sat Dec 30 18:56:22 PST 2017 * Sat Dec 30 19:05:04 PST 2017 * Sat Dec 30 19:05:23 PST 2017 * Sat Dec 30 19:11:53 PST 2017 * Sat Dec 30 19:14:31 PST 2017 * Sat Dec 30 19:16:20 PST 2017 * Sat Dec 30 19:18:05 PST 2017 * Sat Dec 30 19:18:45 PST 2017 * Sat Dec 30 19:22:44 PST 2017 * Sat Dec 30 19:24:41 PST 2017 * Sat Dec 30 19:26:57 PST 2017 * Sat Dec 30 19:40:37 PST 2017 * wip models * reward bonus * test prep * Sun Dec 31 18:45:25 PST 2017 * Sun Dec 31 18:58:28 PST 2017 * Sun Dec 31 18:59:34 PST 2017 * Sun Dec 31 19:03:33 PST 2017 * Sun Dec 31 19:05:05 PST 2017 * Sun Dec 31 19:09:25 PST 2017 * fix train * kill * add tuple preprocessor * Sun Dec 31 20:38:33 PST 2017 * Sun Dec 31 22:51:24 PST 2017 * Sun Dec 31 23:14:13 PST 2017 * Sun Dec 31 23:16:04 PST 2017 * Mon Jan 1 00:08:35 PST 2018 * Mon Jan 1 00:10:48 PST 2018 * Mon Jan 1 01:08:31 PST 2018 * Mon Jan 1 14:45:44 PST 2018 * Mon Jan 1 14:54:56 PST 2018 * Mon Jan 1 17:29:29 PST 2018 * switch to euclidean dists * Mon Jan 1 17:39:27 PST 2018 * Mon Jan 1 17:41:47 PST 2018 * Mon Jan 1 17:44:18 PST 2018 * Mon Jan 1 17:47:09 PST 2018 * Mon Jan 1 20:31:02 PST 2018 * Mon Jan 1 20:39:33 PST 2018 * Mon Jan 1 20:40:55 PST 2018 * Mon Jan 1 20:55:06 PST 2018 * Mon Jan 1 21:05:52 PST 2018 * fix env path * merge richards fix * fix hash * Mon Jan 1 22:04:00 PST 2018 * Mon Jan 1 22:25:29 PST 2018 * Mon Jan 1 22:30:42 PST 2018 * simplified reward function * add framestack * add env configs * simplify speed reward * Tue Jan 2 17:36:15 PST 2018 * Tue Jan 2 17:49:16 PST 2018 * Tue Jan 2 18:10:38 PST 2018 * add lane keeping simple mode * Tue Jan 2 20:25:26 PST 2018 * Tue Jan 2 20:30:30 PST 2018 * Tue Jan 2 20:33:26 PST 2018 * Tue Jan 2 20:41:42 PST 2018 * ppo lane keep * simplify discrete actions * Tue Jan 2 21:41:05 PST 2018 * Tue Jan 2 21:49:03 PST 2018 * Tue Jan 2 22:12:23 PST 2018 * Tue Jan 2 22:14:42 PST 2018 * Tue Jan 2 22:20:59 PST 2018 * Tue Jan 2 22:23:43 PST 2018 * Tue Jan 2 22:26:27 PST 2018 * Tue Jan 2 22:27:20 PST 2018 * Tue Jan 2 22:44:00 PST 2018 * Tue Jan 2 22:57:58 PST 2018 * Tue Jan 2 23:08:51 PST 2018 * Tue Jan 2 23:11:32 PST 2018 * update dqn reward * Thu Jan 4 12:29:40 PST 2018 * Thu Jan 4 12:30:26 PST 2018 * Update train_dqn.py * fix
2018-01-05 21:32:41 -08:00
self.assertEqual(type(p3), NoPreprocessor)
def test_default_models(self):
ray.init(object_store_memory=1000 * 1024 * 1024)
with tf1.variable_scope("test1"):
p1 = ModelCatalog.get_model_v2(
obs_space=Box(0, 1, shape=(3,), dtype=np.float32),
action_space=Discrete(5),
num_outputs=5,
model_config={})
[carla] [rllib] Add support for carla nav planner and scenarios from paper (#1382) * wip * Sat Dec 30 15:07:28 PST 2017 * log video * video doesn't work well * scenario integration * Sat Dec 30 17:30:22 PST 2017 * Sat Dec 30 17:31:05 PST 2017 * Sat Dec 30 17:31:32 PST 2017 * Sat Dec 30 17:32:16 PST 2017 * Sat Dec 30 17:34:11 PST 2017 * Sat Dec 30 17:34:50 PST 2017 * Sat Dec 30 17:35:34 PST 2017 * Sat Dec 30 17:38:49 PST 2017 * Sat Dec 30 17:40:39 PST 2017 * Sat Dec 30 17:43:00 PST 2017 * Sat Dec 30 17:43:04 PST 2017 * Sat Dec 30 17:45:56 PST 2017 * Sat Dec 30 17:46:26 PST 2017 * Sat Dec 30 17:47:02 PST 2017 * Sat Dec 30 17:51:53 PST 2017 * Sat Dec 30 17:52:54 PST 2017 * Sat Dec 30 17:56:43 PST 2017 * Sat Dec 30 18:27:07 PST 2017 * Sat Dec 30 18:27:52 PST 2017 * fix train * Sat Dec 30 18:41:51 PST 2017 * Sat Dec 30 18:54:11 PST 2017 * Sat Dec 30 18:56:22 PST 2017 * Sat Dec 30 19:05:04 PST 2017 * Sat Dec 30 19:05:23 PST 2017 * Sat Dec 30 19:11:53 PST 2017 * Sat Dec 30 19:14:31 PST 2017 * Sat Dec 30 19:16:20 PST 2017 * Sat Dec 30 19:18:05 PST 2017 * Sat Dec 30 19:18:45 PST 2017 * Sat Dec 30 19:22:44 PST 2017 * Sat Dec 30 19:24:41 PST 2017 * Sat Dec 30 19:26:57 PST 2017 * Sat Dec 30 19:40:37 PST 2017 * wip models * reward bonus * test prep * Sun Dec 31 18:45:25 PST 2017 * Sun Dec 31 18:58:28 PST 2017 * Sun Dec 31 18:59:34 PST 2017 * Sun Dec 31 19:03:33 PST 2017 * Sun Dec 31 19:05:05 PST 2017 * Sun Dec 31 19:09:25 PST 2017 * fix train * kill * add tuple preprocessor * Sun Dec 31 20:38:33 PST 2017 * Sun Dec 31 22:51:24 PST 2017 * Sun Dec 31 23:14:13 PST 2017 * Sun Dec 31 23:16:04 PST 2017 * Mon Jan 1 00:08:35 PST 2018 * Mon Jan 1 00:10:48 PST 2018 * Mon Jan 1 01:08:31 PST 2018 * Mon Jan 1 14:45:44 PST 2018 * Mon Jan 1 14:54:56 PST 2018 * Mon Jan 1 17:29:29 PST 2018 * switch to euclidean dists * Mon Jan 1 17:39:27 PST 2018 * Mon Jan 1 17:41:47 PST 2018 * Mon Jan 1 17:44:18 PST 2018 * Mon Jan 1 17:47:09 PST 2018 * Mon Jan 1 20:31:02 PST 2018 * Mon Jan 1 20:39:33 PST 2018 * Mon Jan 1 20:40:55 PST 2018 * Mon Jan 1 20:55:06 PST 2018 * Mon Jan 1 21:05:52 PST 2018 * fix env path * merge richards fix * fix hash * Mon Jan 1 22:04:00 PST 2018 * Mon Jan 1 22:25:29 PST 2018 * Mon Jan 1 22:30:42 PST 2018 * simplified reward function * add framestack * add env configs * simplify speed reward * Tue Jan 2 17:36:15 PST 2018 * Tue Jan 2 17:49:16 PST 2018 * Tue Jan 2 18:10:38 PST 2018 * add lane keeping simple mode * Tue Jan 2 20:25:26 PST 2018 * Tue Jan 2 20:30:30 PST 2018 * Tue Jan 2 20:33:26 PST 2018 * Tue Jan 2 20:41:42 PST 2018 * ppo lane keep * simplify discrete actions * Tue Jan 2 21:41:05 PST 2018 * Tue Jan 2 21:49:03 PST 2018 * Tue Jan 2 22:12:23 PST 2018 * Tue Jan 2 22:14:42 PST 2018 * Tue Jan 2 22:20:59 PST 2018 * Tue Jan 2 22:23:43 PST 2018 * Tue Jan 2 22:26:27 PST 2018 * Tue Jan 2 22:27:20 PST 2018 * Tue Jan 2 22:44:00 PST 2018 * Tue Jan 2 22:57:58 PST 2018 * Tue Jan 2 23:08:51 PST 2018 * Tue Jan 2 23:11:32 PST 2018 * update dqn reward * Thu Jan 4 12:29:40 PST 2018 * Thu Jan 4 12:30:26 PST 2018 * Update train_dqn.py * fix
2018-01-05 21:32:41 -08:00
self.assertEqual(type(p1), FullyConnectedNetwork)
with tf1.variable_scope("test2"):
p2 = ModelCatalog.get_model_v2(
obs_space=Box(0, 1, shape=(84, 84, 3), dtype=np.float32),
action_space=Discrete(5),
num_outputs=5,
model_config={})
[carla] [rllib] Add support for carla nav planner and scenarios from paper (#1382) * wip * Sat Dec 30 15:07:28 PST 2017 * log video * video doesn't work well * scenario integration * Sat Dec 30 17:30:22 PST 2017 * Sat Dec 30 17:31:05 PST 2017 * Sat Dec 30 17:31:32 PST 2017 * Sat Dec 30 17:32:16 PST 2017 * Sat Dec 30 17:34:11 PST 2017 * Sat Dec 30 17:34:50 PST 2017 * Sat Dec 30 17:35:34 PST 2017 * Sat Dec 30 17:38:49 PST 2017 * Sat Dec 30 17:40:39 PST 2017 * Sat Dec 30 17:43:00 PST 2017 * Sat Dec 30 17:43:04 PST 2017 * Sat Dec 30 17:45:56 PST 2017 * Sat Dec 30 17:46:26 PST 2017 * Sat Dec 30 17:47:02 PST 2017 * Sat Dec 30 17:51:53 PST 2017 * Sat Dec 30 17:52:54 PST 2017 * Sat Dec 30 17:56:43 PST 2017 * Sat Dec 30 18:27:07 PST 2017 * Sat Dec 30 18:27:52 PST 2017 * fix train * Sat Dec 30 18:41:51 PST 2017 * Sat Dec 30 18:54:11 PST 2017 * Sat Dec 30 18:56:22 PST 2017 * Sat Dec 30 19:05:04 PST 2017 * Sat Dec 30 19:05:23 PST 2017 * Sat Dec 30 19:11:53 PST 2017 * Sat Dec 30 19:14:31 PST 2017 * Sat Dec 30 19:16:20 PST 2017 * Sat Dec 30 19:18:05 PST 2017 * Sat Dec 30 19:18:45 PST 2017 * Sat Dec 30 19:22:44 PST 2017 * Sat Dec 30 19:24:41 PST 2017 * Sat Dec 30 19:26:57 PST 2017 * Sat Dec 30 19:40:37 PST 2017 * wip models * reward bonus * test prep * Sun Dec 31 18:45:25 PST 2017 * Sun Dec 31 18:58:28 PST 2017 * Sun Dec 31 18:59:34 PST 2017 * Sun Dec 31 19:03:33 PST 2017 * Sun Dec 31 19:05:05 PST 2017 * Sun Dec 31 19:09:25 PST 2017 * fix train * kill * add tuple preprocessor * Sun Dec 31 20:38:33 PST 2017 * Sun Dec 31 22:51:24 PST 2017 * Sun Dec 31 23:14:13 PST 2017 * Sun Dec 31 23:16:04 PST 2017 * Mon Jan 1 00:08:35 PST 2018 * Mon Jan 1 00:10:48 PST 2018 * Mon Jan 1 01:08:31 PST 2018 * Mon Jan 1 14:45:44 PST 2018 * Mon Jan 1 14:54:56 PST 2018 * Mon Jan 1 17:29:29 PST 2018 * switch to euclidean dists * Mon Jan 1 17:39:27 PST 2018 * Mon Jan 1 17:41:47 PST 2018 * Mon Jan 1 17:44:18 PST 2018 * Mon Jan 1 17:47:09 PST 2018 * Mon Jan 1 20:31:02 PST 2018 * Mon Jan 1 20:39:33 PST 2018 * Mon Jan 1 20:40:55 PST 2018 * Mon Jan 1 20:55:06 PST 2018 * Mon Jan 1 21:05:52 PST 2018 * fix env path * merge richards fix * fix hash * Mon Jan 1 22:04:00 PST 2018 * Mon Jan 1 22:25:29 PST 2018 * Mon Jan 1 22:30:42 PST 2018 * simplified reward function * add framestack * add env configs * simplify speed reward * Tue Jan 2 17:36:15 PST 2018 * Tue Jan 2 17:49:16 PST 2018 * Tue Jan 2 18:10:38 PST 2018 * add lane keeping simple mode * Tue Jan 2 20:25:26 PST 2018 * Tue Jan 2 20:30:30 PST 2018 * Tue Jan 2 20:33:26 PST 2018 * Tue Jan 2 20:41:42 PST 2018 * ppo lane keep * simplify discrete actions * Tue Jan 2 21:41:05 PST 2018 * Tue Jan 2 21:49:03 PST 2018 * Tue Jan 2 22:12:23 PST 2018 * Tue Jan 2 22:14:42 PST 2018 * Tue Jan 2 22:20:59 PST 2018 * Tue Jan 2 22:23:43 PST 2018 * Tue Jan 2 22:26:27 PST 2018 * Tue Jan 2 22:27:20 PST 2018 * Tue Jan 2 22:44:00 PST 2018 * Tue Jan 2 22:57:58 PST 2018 * Tue Jan 2 23:08:51 PST 2018 * Tue Jan 2 23:11:32 PST 2018 * update dqn reward * Thu Jan 4 12:29:40 PST 2018 * Thu Jan 4 12:30:26 PST 2018 * Update train_dqn.py * fix
2018-01-05 21:32:41 -08:00
self.assertEqual(type(p2), VisionNetwork)
def test_custom_model(self):
ray.init(object_store_memory=1000 * 1024 * 1024)
ModelCatalog.register_custom_model("foo", CustomModel)
p1 = ModelCatalog.get_model_v2(
obs_space=Box(0, 1, shape=(3, ), dtype=np.float32),
action_space=Discrete(5),
num_outputs=5,
model_config={"custom_model": "foo"})
[carla] [rllib] Add support for carla nav planner and scenarios from paper (#1382) * wip * Sat Dec 30 15:07:28 PST 2017 * log video * video doesn't work well * scenario integration * Sat Dec 30 17:30:22 PST 2017 * Sat Dec 30 17:31:05 PST 2017 * Sat Dec 30 17:31:32 PST 2017 * Sat Dec 30 17:32:16 PST 2017 * Sat Dec 30 17:34:11 PST 2017 * Sat Dec 30 17:34:50 PST 2017 * Sat Dec 30 17:35:34 PST 2017 * Sat Dec 30 17:38:49 PST 2017 * Sat Dec 30 17:40:39 PST 2017 * Sat Dec 30 17:43:00 PST 2017 * Sat Dec 30 17:43:04 PST 2017 * Sat Dec 30 17:45:56 PST 2017 * Sat Dec 30 17:46:26 PST 2017 * Sat Dec 30 17:47:02 PST 2017 * Sat Dec 30 17:51:53 PST 2017 * Sat Dec 30 17:52:54 PST 2017 * Sat Dec 30 17:56:43 PST 2017 * Sat Dec 30 18:27:07 PST 2017 * Sat Dec 30 18:27:52 PST 2017 * fix train * Sat Dec 30 18:41:51 PST 2017 * Sat Dec 30 18:54:11 PST 2017 * Sat Dec 30 18:56:22 PST 2017 * Sat Dec 30 19:05:04 PST 2017 * Sat Dec 30 19:05:23 PST 2017 * Sat Dec 30 19:11:53 PST 2017 * Sat Dec 30 19:14:31 PST 2017 * Sat Dec 30 19:16:20 PST 2017 * Sat Dec 30 19:18:05 PST 2017 * Sat Dec 30 19:18:45 PST 2017 * Sat Dec 30 19:22:44 PST 2017 * Sat Dec 30 19:24:41 PST 2017 * Sat Dec 30 19:26:57 PST 2017 * Sat Dec 30 19:40:37 PST 2017 * wip models * reward bonus * test prep * Sun Dec 31 18:45:25 PST 2017 * Sun Dec 31 18:58:28 PST 2017 * Sun Dec 31 18:59:34 PST 2017 * Sun Dec 31 19:03:33 PST 2017 * Sun Dec 31 19:05:05 PST 2017 * Sun Dec 31 19:09:25 PST 2017 * fix train * kill * add tuple preprocessor * Sun Dec 31 20:38:33 PST 2017 * Sun Dec 31 22:51:24 PST 2017 * Sun Dec 31 23:14:13 PST 2017 * Sun Dec 31 23:16:04 PST 2017 * Mon Jan 1 00:08:35 PST 2018 * Mon Jan 1 00:10:48 PST 2018 * Mon Jan 1 01:08:31 PST 2018 * Mon Jan 1 14:45:44 PST 2018 * Mon Jan 1 14:54:56 PST 2018 * Mon Jan 1 17:29:29 PST 2018 * switch to euclidean dists * Mon Jan 1 17:39:27 PST 2018 * Mon Jan 1 17:41:47 PST 2018 * Mon Jan 1 17:44:18 PST 2018 * Mon Jan 1 17:47:09 PST 2018 * Mon Jan 1 20:31:02 PST 2018 * Mon Jan 1 20:39:33 PST 2018 * Mon Jan 1 20:40:55 PST 2018 * Mon Jan 1 20:55:06 PST 2018 * Mon Jan 1 21:05:52 PST 2018 * fix env path * merge richards fix * fix hash * Mon Jan 1 22:04:00 PST 2018 * Mon Jan 1 22:25:29 PST 2018 * Mon Jan 1 22:30:42 PST 2018 * simplified reward function * add framestack * add env configs * simplify speed reward * Tue Jan 2 17:36:15 PST 2018 * Tue Jan 2 17:49:16 PST 2018 * Tue Jan 2 18:10:38 PST 2018 * add lane keeping simple mode * Tue Jan 2 20:25:26 PST 2018 * Tue Jan 2 20:30:30 PST 2018 * Tue Jan 2 20:33:26 PST 2018 * Tue Jan 2 20:41:42 PST 2018 * ppo lane keep * simplify discrete actions * Tue Jan 2 21:41:05 PST 2018 * Tue Jan 2 21:49:03 PST 2018 * Tue Jan 2 22:12:23 PST 2018 * Tue Jan 2 22:14:42 PST 2018 * Tue Jan 2 22:20:59 PST 2018 * Tue Jan 2 22:23:43 PST 2018 * Tue Jan 2 22:26:27 PST 2018 * Tue Jan 2 22:27:20 PST 2018 * Tue Jan 2 22:44:00 PST 2018 * Tue Jan 2 22:57:58 PST 2018 * Tue Jan 2 23:08:51 PST 2018 * Tue Jan 2 23:11:32 PST 2018 * update dqn reward * Thu Jan 4 12:29:40 PST 2018 * Thu Jan 4 12:30:26 PST 2018 * Update train_dqn.py * fix
2018-01-05 21:32:41 -08:00
self.assertEqual(str(type(p1)), str(CustomModel))
def test_custom_action_distribution(self):
class Model():
pass
ray.init(
object_store_memory=1000 * 1024 * 1024,
ignore_reinit_error=True) # otherwise fails sometimes locally
# registration
ModelCatalog.register_custom_action_dist("test",
CustomActionDistribution)
action_space = Box(0, 1, shape=(5, 3), dtype=np.float32)
# test retrieving it
model_config = MODEL_DEFAULTS.copy()
model_config["custom_action_dist"] = "test"
dist_cls, param_shape = ModelCatalog.get_action_dist(
action_space, model_config)
self.assertEqual(str(dist_cls), str(CustomActionDistribution))
self.assertEqual(param_shape, action_space.shape)
# test the class works as a distribution
dist_input = tf1.placeholder(tf.float32, (None,) + param_shape)
model = Model()
model.model_config = model_config
dist = dist_cls(dist_input, model=model)
self.assertEqual(dist.sample().shape[1:], dist_input.shape[1:])
self.assertIsInstance(dist.sample(), tf.Tensor)
with self.assertRaises(NotImplementedError):
dist.entropy()
# test passing the options to it
model_config["custom_model_config"].update({"output_dim": (3, )})
dist_cls, param_shape = ModelCatalog.get_action_dist(
action_space, model_config)
self.assertEqual(param_shape, (3, ))
dist_input = tf1.placeholder(tf.float32, (None,) + param_shape)
model.model_config = model_config
dist = dist_cls(dist_input, model=model)
self.assertEqual(dist.sample().shape[1:], dist_input.shape[1:])
self.assertIsInstance(dist.sample(), tf.Tensor)
with self.assertRaises(NotImplementedError):
dist.entropy()
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))