ray/rllib/examples/hierarchical_training.py

105 lines
3.5 KiB
Python
Raw Normal View History

"""Example of hierarchical training using the multi-agent API.
The example env is that of a "windy maze". The agent observes the current wind
direction and can either choose to stand still, or move in that direction.
You can try out the env directly with:
$ python hierarchical_training.py --flat
A simple hierarchical formulation involves a high-level agent that issues goals
(i.e., go north / south / east / west), and a low-level agent that executes
these goals over a number of time-steps. This can be implemented as a
multi-agent environment with a top-level agent and low-level agents spawned
for each higher-level action. The lower level agent is rewarded for moving
in the right direction.
You can try this formulation with:
$ python hierarchical_training.py # gets ~100 rew after ~100k timesteps
Note that the hierarchical formulation actually converges slightly slower than
using --flat in this example.
"""
import argparse
from gym.spaces import Discrete, Tuple
import logging
import ray
from ray import tune
from ray.tune import function
from ray.rllib.examples.env.windy_maze_env import WindyMazeEnv, \
HierarchicalWindyMazeEnv
from ray.rllib.utils.test_utils import check_learning_achieved
parser = argparse.ArgumentParser()
parser.add_argument("--flat", action="store_true")
parser.add_argument("--as-test", action="store_true")
parser.add_argument("--torch", action="store_true")
parser.add_argument("--stop-iters", type=int, default=200)
parser.add_argument("--stop-reward", type=float, default=0.0)
parser.add_argument("--stop-timesteps", type=int, default=100000)
logger = logging.getLogger(__name__)
if __name__ == "__main__":
args = parser.parse_args()
ray.init()
stop = {
"training_iteration": args.stop_iters,
"timesteps_total": args.stop_timesteps,
"episode_reward_mean": args.stop_reward,
}
if args.flat:
results = tune.run(
"PPO",
stop=stop,
config={
"env": WindyMazeEnv,
"num_workers": 0,
"framework": "torch" if args.torch else "tf",
},
)
else:
maze = WindyMazeEnv(None)
def policy_mapping_fn(agent_id):
if agent_id.startswith("low_level_"):
return "low_level_policy"
else:
return "high_level_policy"
config = {
"env": HierarchicalWindyMazeEnv,
"num_workers": 0,
"log_level": "INFO",
"entropy_coeff": 0.01,
"multiagent": {
"policies": {
"high_level_policy": (None, maze.observation_space,
Discrete(4), {
"gamma": 0.9
}),
"low_level_policy": (None,
Tuple([
maze.observation_space,
Discrete(4)
]), maze.action_space, {
"gamma": 0.0
}),
},
"policy_mapping_fn": function(policy_mapping_fn),
},
"framework": "torch" if args.torch else "tf",
}
results = tune.run("PPO", stop=stop, config=config, verbose=1)
if args.as_test:
check_learning_achieved(results, args.stop_reward)
ray.shutdown()