2019-06-07 16:45:36 -07:00
|
|
|
from ray.rllib.agents.dqn.apex import APEX_TRAINER_PROPERTIES
|
2019-04-07 00:36:18 -07:00
|
|
|
from ray.rllib.agents.ddpg.ddpg import DDPGTrainer, \
|
|
|
|
DEFAULT_CONFIG as DDPG_CONFIG
|
2018-04-19 22:36:29 -07:00
|
|
|
|
2020-03-01 20:53:35 +01:00
|
|
|
APEX_DDPG_DEFAULT_CONFIG = DDPGTrainer.merge_trainer_configs(
|
2018-10-16 15:55:11 -07:00
|
|
|
DDPG_CONFIG, # see also the options in ddpg.py, which are also supported
|
2018-05-20 16:15:06 -07:00
|
|
|
{
|
2020-03-01 20:53:35 +01:00
|
|
|
"optimizer": {
|
|
|
|
"max_weight_sync_delay": 400,
|
|
|
|
"num_replay_buffer_shards": 4,
|
|
|
|
"debug": False
|
|
|
|
},
|
|
|
|
"exploration_config": {
|
|
|
|
"type": "PerWorkerOrnsteinUhlenbeckNoise"
|
|
|
|
},
|
2018-06-09 00:21:35 -07:00
|
|
|
"n_step": 3,
|
2018-11-13 18:00:03 -08:00
|
|
|
"num_gpus": 0,
|
2018-06-09 00:21:35 -07:00
|
|
|
"num_workers": 32,
|
|
|
|
"buffer_size": 2000000,
|
|
|
|
"learning_starts": 50000,
|
|
|
|
"train_batch_size": 512,
|
|
|
|
"sample_batch_size": 50,
|
|
|
|
"target_network_update_freq": 500000,
|
|
|
|
"timesteps_per_iteration": 25000,
|
|
|
|
"worker_side_prioritization": True,
|
2018-07-30 13:25:35 -07:00
|
|
|
"min_iter_time_s": 30,
|
2018-05-20 16:15:06 -07:00
|
|
|
},
|
|
|
|
)
|
2018-04-19 22:36:29 -07:00
|
|
|
|
2019-06-07 16:45:36 -07:00
|
|
|
ApexDDPGTrainer = DDPGTrainer.with_updates(
|
|
|
|
name="APEX_DDPG",
|
|
|
|
default_config=APEX_DDPG_DEFAULT_CONFIG,
|
|
|
|
**APEX_TRAINER_PROPERTIES)
|