mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
75 lines
2.9 KiB
Python
75 lines
2.9 KiB
Python
![]() |
from gym.spaces import Discrete
|
||
|
|
||
|
from ray.rllib.utils.annotations import override
|
||
|
from ray.rllib.utils.exploration.exploration import Exploration
|
||
|
from ray.rllib.utils.framework import try_import_tf, try_import_torch, \
|
||
|
tf_function
|
||
|
from ray.rllib.utils.tuple_actions import TupleActions
|
||
|
|
||
|
tf = try_import_tf()
|
||
|
torch, _ = try_import_torch()
|
||
|
|
||
|
|
||
|
class Random(Exploration):
|
||
|
"""A random action selector (deterministic/greedy for explore=False).
|
||
|
|
||
|
If explore=True, returns actions randomly from `self.action_space` (via
|
||
|
Space.sample()).
|
||
|
If explore=False, returns the greedy/max-likelihood action.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, action_space, framework="tf", **kwargs):
|
||
|
"""Initialize a Random Exploration object.
|
||
|
|
||
|
Args:
|
||
|
action_space (Space): The gym action space used by the environment.
|
||
|
framework (Optional[str]): One of None, "tf", "torch".
|
||
|
"""
|
||
|
assert isinstance(action_space, Discrete)
|
||
|
super().__init__(
|
||
|
action_space=action_space, framework=framework, **kwargs)
|
||
|
|
||
|
@override(Exploration)
|
||
|
def get_exploration_action(self,
|
||
|
model_output,
|
||
|
model,
|
||
|
action_dist_class,
|
||
|
explore=True,
|
||
|
timestep=None):
|
||
|
# Instantiate the distribution object.
|
||
|
action_dist = action_dist_class(model_output, model)
|
||
|
|
||
|
if self.framework == "tf":
|
||
|
return self._get_tf_exploration_action_op(action_dist, explore,
|
||
|
timestep)
|
||
|
else:
|
||
|
return self._get_torch_exploration_action(action_dist, explore,
|
||
|
timestep)
|
||
|
|
||
|
@tf_function(tf)
|
||
|
def _get_tf_exploration_action_op(self, action_dist, explore, timestep):
|
||
|
if explore:
|
||
|
action = self.action_space.sample()
|
||
|
# Will be unnecessary, once we support batch/time-aware Spaces.
|
||
|
action = tf.expand_dims(tf.cast(action, dtype=tf.int32), 0)
|
||
|
else:
|
||
|
action = tf.cast(
|
||
|
action_dist.deterministic_sample(), dtype=tf.int32)
|
||
|
# TODO(sven): Move into (deterministic_)sample(logp=True|False)
|
||
|
if isinstance(action, TupleActions):
|
||
|
batch_size = tf.shape(action[0][0])[0]
|
||
|
else:
|
||
|
batch_size = tf.shape(action)[0]
|
||
|
logp = tf.zeros(shape=(batch_size, ), dtype=tf.float32)
|
||
|
return action, logp
|
||
|
|
||
|
def _get_torch_exploration_action(self, action_dist, explore, timestep):
|
||
|
if explore:
|
||
|
# Unsqueeze will be unnecessary, once we support batch/time-aware
|
||
|
# Spaces.
|
||
|
action = torch.IntTensor(self.action_space.sample()).unsqueeze(0)
|
||
|
else:
|
||
|
action = torch.IntTensor(action_dist.deterministic_sample())
|
||
|
logp = torch.zeros((action.size()[0], ), dtype=torch.float32)
|
||
|
return action, logp
|