ray/rllib/env/wrappers/open_spiel.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

107 lines
3.9 KiB
Python
Raw Normal View History

from gym.spaces import Box, Discrete
import numpy as np
import pyspiel
from ray.rllib.env.multi_agent_env import MultiAgentEnv
class OpenSpielEnv(MultiAgentEnv):
def __init__(self, env):
2022-01-18 07:34:06 -08:00
super().__init__()
self.env = env
self._skip_env_checking = True
# Agent IDs are ints, starting from 0.
self.num_agents = self.env.num_players()
# Store the open-spiel game type.
self.type = self.env.get_type()
# Stores the current open-spiel game state.
self.state = None
# Extract observation- and action spaces from game.
self.observation_space = Box(
float("-inf"), float("inf"), (self.env.observation_tensor_size(),)
)
self.action_space = Discrete(self.env.num_distinct_actions())
def reset(self):
self.state = self.env.new_initial_state()
return self._get_obs()
def step(self, action):
# Before applying action(s), there could be chance nodes.
# E.g. if env has to figure out, which agent's action should get
# resolved first in a simultaneous node.
self._solve_chance_nodes()
penalties = {}
# Sequential game:
if str(self.type.dynamics) == "Dynamics.SEQUENTIAL":
curr_player = self.state.current_player()
assert curr_player in action
try:
self.state.apply_action(action[curr_player])
# TODO: (sven) resolve this hack by publishing legal actions
# with each step.
except pyspiel.SpielError:
self.state.apply_action(np.random.choice(self.state.legal_actions()))
penalties[curr_player] = -0.1
# Compile rewards dict.
rewards = {ag: r for ag, r in enumerate(self.state.returns())}
# Simultaneous game.
else:
assert self.state.current_player() == -2
# Apparently, this works, even if one or more actions are invalid.
self.state.apply_actions([action[ag] for ag in range(self.num_agents)])
# Now that we have applied all actions, get the next obs.
obs = self._get_obs()
# Compile rewards dict and add the accumulated penalties
# (for taking invalid actions).
rewards = {ag: r for ag, r in enumerate(self.state.returns())}
for ag, penalty in penalties.items():
rewards[ag] += penalty
# Are we done?
is_done = self.state.is_terminal()
dones = dict(
{ag: is_done for ag in range(self.num_agents)}, **{"__all__": is_done}
)
return obs, rewards, dones, {}
def render(self, mode=None) -> None:
if mode == "human":
print(self.state)
def _get_obs(self):
# Before calculating an observation, there could be chance nodes
# (that may have an effect on the actual observations).
# E.g. After reset, figure out initial (random) positions of the
# agents.
self._solve_chance_nodes()
if self.state.is_terminal():
return {}
# Sequential game:
if str(self.type.dynamics) == "Dynamics.SEQUENTIAL":
curr_player = self.state.current_player()
return {curr_player: np.reshape(self.state.observation_tensor(), [-1])}
# Simultaneous game.
else:
assert self.state.current_player() == -2
return {
ag: np.reshape(self.state.observation_tensor(ag), [-1])
for ag in range(self.num_agents)
}
def _solve_chance_nodes(self):
# Chance node(s): Sample a (non-player) action and apply.
while self.state.is_chance_node():
assert self.state.current_player() == -1
actions, probs = zip(*self.state.chance_outcomes())
action = np.random.choice(actions, p=probs)
self.state.apply_action(action)