An example of this can be found in `hyperband_example.py <https://github.com/ray-project/ray/blob/master/python/ray/tune/examples/hyperband_example.py>`__.
An example of this can be found in `async_hyperband_example.py <https://github.com/ray-project/ray/blob/master/python/ray/tune/examples/async_hyperband_example.py>`__.
Trial Variant Generation
------------------------
In the above example, we specified a grid search over two parameters using the ``grid_search`` helper function. Ray Tune also supports sampling parameters from user-specified lambda functions, which can be used in combination with grid search.
The following shows grid search over two nested parameters combined with random sampling from two lambda functions. Note that the value of ``beta`` depends on the value of ``alpha``, which is represented by referencing ``spec.config.alpha`` in the lambda function. This lets you specify conditional parameter distributions.
By default, each random variable and grid search point is sampled once. To take multiple random samples or repeat grid search runs, add ``repeat: N`` to the experiment config. E.g. in the above, ``"repeat": 10`` repeats the 3x3 grid search 10 times, for a total of 90 trials, each with randomly sampled values of ``alpha`` and ``beta``.
For more information on variant generation, see `variant_generator.py <https://github.com/ray-project/ray/blob/master/python/ray/tune/variant_generator.py>`__.
Ray Tune runs each trial as a Ray actor, allocating the specified GPU and CPU ``trial_resources`` to each actor (defaulting to 1 CPU per trial). A trial will not be scheduled unless at least that amount of resources is available in the cluster, preventing the cluster from being overloaded.
If your trainable function / class creates further Ray actors or tasks that also consume CPU / GPU resources, you will also want to set ``extra_cpu`` or ``extra_gpu`` to reserve extra resource slots for the actors you will create. For example, if a trainable class requires 1 GPU itself, but will launch 4 actors each using another GPU, then it should set ``"gpu": 1, "extra_gpu": 4``.