2016-06-10 14:12:15 -07:00
# Ray
2016-02-22 17:32:07 -08:00
2016-06-22 11:28:01 -07:00
[](https://travis-ci.org/amplab/ray)
2016-07-28 20:47:37 -07:00
Ray is an experimental distributed extension of Python. It is under development
2016-09-16 23:05:14 -07:00
and not ready to be used.
2016-02-22 17:32:07 -08:00
2016-07-08 20:03:21 -07:00
The goal of Ray is to make it easy to write machine learning applications that
run on a cluster while providing the development and debugging experience of
working on a single machine.
Before jumping into the details, here's a simple Python example for doing a
Monte Carlo estimation of pi (using multiple cores or potentially multiple
machines).
```python
import ray
import numpy as np
2016-07-28 20:47:37 -07:00
# Start a scheduler, an object store, and some workers.
2016-07-31 19:26:35 -07:00
ray.init(start_ray_local=True, num_workers=10)
2016-07-28 20:47:37 -07:00
# Define a remote function for estimating pi.
2016-08-30 15:14:02 -07:00
@ray .remote
2016-07-08 20:03:21 -07:00
def estimate_pi(n):
x = np.random.uniform(size=n)
y = np.random.uniform(size=n)
return 4 * np.mean(x * * 2 + y ** 2 < 1 )
2016-07-28 20:47:37 -07:00
# Launch 10 tasks, each of which estimates pi.
2016-07-31 19:58:03 -07:00
result_ids = []
2016-07-28 20:47:37 -07:00
for _ in range(10):
2016-07-31 19:58:03 -07:00
result_ids.append(estimate_pi.remote(100))
2016-07-28 20:47:37 -07:00
# Fetch the results of the tasks and print their average.
2016-09-02 18:02:44 -07:00
estimate = np.mean(ray.get(result_ids))
2016-07-28 20:47:37 -07:00
print "Pi is approximately {}.".format(estimate)
2016-07-08 20:03:21 -07:00
```
2016-07-31 15:25:19 -07:00
Within the for loop, each call to `estimate_pi.remote(100)` sends a message to
the scheduler asking it to schedule the task of running `estimate_pi` with the
2016-07-28 20:47:37 -07:00
argument `100` . This call returns right away without waiting for the actual
estimation of pi to take place. Instead of returning a float, it returns an
2016-07-31 19:58:03 -07:00
**object ID**, which represents the eventual output of the computation (this is
a similar to a Future).
2016-07-08 20:03:21 -07:00
2016-07-31 19:58:03 -07:00
The call to `ray.get(result_id)` takes an object ID and returns the actual
2016-07-08 20:03:21 -07:00
estimate of pi (waiting until the computation has finished if necessary).
## Next Steps
2016-08-01 16:44:11 -07:00
- Installation on [Ubuntu ](doc/install-on-ubuntu.md ), [Mac OS X ](doc/install-on-macosx.md ), [Windows ](doc/install-on-windows.md ), [Docker ](doc/install-on-docker.md )
2016-07-08 20:03:21 -07:00
- [Tutorial ](doc/tutorial.md )
2016-09-16 23:05:14 -07:00
- Documentation
- [Using Ray with TensorFlow ](doc/using-ray-wih-tensorflow.md )
- [Using Ray on a Cluster ](doc/using-ray-on-a-cluster.md )
2016-07-08 20:03:21 -07:00
## Example Applications
- [Hyperparameter Optimization ](examples/hyperopt/README.md )
- [Batch L-BFGS ](examples/lbfgs/README.md )
2016-08-01 18:29:04 -07:00
- [Learning to Play Pong ](examples/rl_pong/README.md )
- [Training AlexNet ](examples/alexnet/README.md )