ray/doc/source/data/dataset.rst

364 lines
12 KiB
ReStructuredText
Raw Normal View History

2021-07-16 12:31:52 -07:00
.. _datasets:
Datasets: Flexible Distributed Data Loading
===========================================
.. tip::
Datasets is available as **beta** in Ray 1.8+. Please file feature requests and bug reports on GitHub Issues or join the discussion on the `Ray Slack <https://forms.gle/9TSdDYUgxYs8SA9e8>`__.
Ray Datasets are the standard way to load and exchange data in Ray libraries and applications. Datasets provide basic distributed data transformations such as ``map``, ``filter``, and ``repartition``, and are compatible with a variety of file formats, datasources, and distributed frameworks.
.. image:: dataset.svg
..
https://docs.google.com/drawings/d/16AwJeBNR46_TsrkOmMbGaBK7u-OPsf_V8fHjU-d2PPQ/edit
Concepts
--------
Ray Datasets implement `Distributed Arrow <https://arrow.apache.org/>`__. A Dataset consists of a list of Ray object references to *blocks*. Each block holds a set of items in either an `Arrow table <https://arrow.apache.org/docs/python/data.html#tables>`__ or a Python list (for Arrow incompatible objects). Having multiple blocks in a dataset allows for parallel transformation and ingest of the data (e.g., into :ref:`Ray Train <train-docs>` for ML training).
The following figure visualizes a Dataset that has three Arrow table blocks, each block holding 1000 rows each:
.. image:: dataset-arch.svg
..
https://docs.google.com/drawings/d/1PmbDvHRfVthme9XD7EYM-LIHPXtHdOfjCbc1SCsM64k/edit
Since a Ray Dataset is just a list of Ray object references, it can be freely passed between Ray tasks, actors, and libraries like any other object reference. This flexibility is a unique characteristic of Ray Datasets.
Compared to `Spark RDDs <https://spark.apache.org/docs/latest/rdd-programming-guide.html>`__ and `Dask Bags <https://docs.dask.org/en/latest/bag.html>`__, Datasets offers a more basic set of features, and executes operations eagerly for simplicity. It is intended that users cast Datasets into more featureful dataframe types (e.g., ``ds.to_dask()``) for advanced operations.
Datasource Compatibility Matrices
---------------------------------
.. list-table:: Input compatibility matrix
:header-rows: 1
* - Input Type
- Read API
- Status
* - CSV File Format
- ``ray.data.read_csv()``
-
* - JSON File Format
- ``ray.data.read_json()``
-
* - Parquet File Format
- ``ray.data.read_parquet()``
-
* - Numpy File Format
- ``ray.data.read_numpy()``
-
* - Text Files
- ``ray.data.read_text()``
-
* - Binary Files
- ``ray.data.read_binary_files()``
-
* - Python Objects
- ``ray.data.from_items()``
-
* - Spark Dataframe
- ``ray.data.from_spark()``
-
* - Dask Dataframe
- ``ray.data.from_dask()``
-
* - Modin Dataframe
- ``ray.data.from_modin()``
2021-08-31 14:19:35 -04:00
-
* - MARS Dataframe
- ``ray.data.from_mars()``
- (todo)
* - Pandas Dataframe Objects
- ``ray.data.from_pandas()``
-
* - NumPy ndarray Objects
- ``ray.data.from_numpy()``
-
* - Arrow Table Objects
- ``ray.data.from_arrow()``
-
* - Custom Datasource
- ``ray.data.read_datasource()``
-
.. list-table:: Output compatibility matrix
:header-rows: 1
* - Output Type
- Dataset API
- Status
* - CSV File Format
- ``ds.write_csv()``
-
* - JSON File Format
- ``ds.write_json()``
-
* - Parquet File Format
- ``ds.write_parquet()``
-
* - Numpy File Format
- ``ds.write_numpy()``
-
* - Spark Dataframe
- ``ds.to_spark()``
-
* - Dask Dataframe
- ``ds.to_dask()``
-
* - Modin Dataframe
- ``ds.to_modin()``
2021-08-31 14:19:35 -04:00
-
* - MARS Dataframe
- ``ds.to_mars()``
- (todo)
* - Arrow Table Objects
- ``ds.to_arrow_refs()``
-
* - Arrow Table Iterator
- ``ds.iter_batches(batch_format="pyarrow")``
-
* - Single Pandas Dataframe
- ``ds.to_pandas()``
-
* - Pandas Dataframe Objects
- ``ds.to_pandas_refs()``
-
* - NumPy ndarray Objects
- ``ds.to_numpy_refs()``
-
* - Pandas Dataframe Iterator
- ``ds.iter_batches(batch_format="pandas")``
-
* - PyTorch Iterable Dataset
- ``ds.to_torch()``
-
* - TensorFlow Iterable Dataset
- ``ds.to_tf()``
-
* - Custom Datasource
- ``ds.write_datasource()``
-
Creating Datasets
-----------------
.. tip::
Run ``pip install "ray[data]"`` to get started!
Get started by creating Datasets from synthetic data using ``ray.data.range()`` and ``ray.data.from_items()``. Datasets can hold either plain Python objects (schema is a Python type), or Arrow records (schema is Arrow).
.. code-block:: python
import ray
# Create a Dataset of Python objects.
ds = ray.data.range(10000)
# -> Dataset(num_blocks=200, num_rows=10000, schema=<class 'int'>)
ds.take(5)
# -> [0, 1, 2, 3, 4]
ds.count()
# -> 10000
# Create a Dataset of Arrow records.
ds = ray.data.from_items([{"col1": i, "col2": str(i)} for i in range(10000)])
# -> Dataset(num_blocks=200, num_rows=10000, schema={col1: int64, col2: string})
ds.show(5)
2021-10-25 12:18:42 -07:00
# -> {'col1': 0, 'col2': '0'}
# -> {'col1': 1, 'col2': '1'}
# -> {'col1': 2, 'col2': '2'}
# -> {'col1': 3, 'col2': '3'}
# -> {'col1': 4, 'col2': '4'}
ds.schema()
# -> col1: int64
# -> col2: string
Datasets can be created from files on local disk or remote datasources such as S3. Any filesystem `supported by pyarrow <http://arrow.apache.org/docs/python/generated/pyarrow.fs.FileSystem.html>`__ can be used to specify file locations:
.. code-block:: python
# Read a directory of files in remote storage.
ds = ray.data.read_csv("s3://bucket/path")
# Read multiple local files.
ds = ray.data.read_csv(["/path/to/file1", "/path/to/file2"])
# Read multiple directories.
ds = ray.data.read_csv(["s3://bucket/path1", "s3://bucket/path2"])
Finally, you can create a ``Dataset`` from existing data in the Ray object store or Ray-compatible distributed DataFrames:
.. code-block:: python
import pandas as pd
import dask.dataframe as dd
# Create a Dataset from a list of Pandas DataFrame objects.
pdf = pd.DataFrame({"one": [1, 2, 3], "two": ["a", "b", "c"]})
ds = ray.data.from_pandas([pdf])
# Create a Dataset from a Dask-on-Ray DataFrame.
dask_df = dd.from_pandas(pdf, npartitions=10)
ds = ray.data.from_dask(dask_df)
Saving Datasets
---------------
Datasets can be written to local or remote storage using ``.write_csv()``, ``.write_json()``, and ``.write_parquet()``.
.. code-block:: python
# Write to csv files in /tmp/output.
ray.data.range(10000).write_csv("/tmp/output")
# -> /tmp/output/data0.csv, /tmp/output/data1.csv, ...
# Use repartition to control the number of output files:
ray.data.range(10000).repartition(1).write_csv("/tmp/output2")
# -> /tmp/output2/data0.csv
You can also convert a ``Dataset`` to Ray-compatibile distributed DataFrames:
.. code-block:: python
# Convert a Ray Dataset into a Dask-on-Ray DataFrame.
dask_df = ds.to_dask()
Transforming Datasets
---------------------
Datasets can be transformed in parallel using ``.map()``. Transformations are executed *eagerly* and block until the operation is finished. Datasets also supports ``.filter()`` and ``.flat_map()``.
.. code-block:: python
ds = ray.data.range(10000)
ds = ds.map(lambda x: x * 2)
# -> Map Progress: 100%|████████████████████| 200/200 [00:00<00:00, 1123.54it/s]
# -> Dataset(num_blocks=200, num_rows=10000, schema=<class 'int'>)
ds.take(5)
# -> [0, 2, 4, 6, 8]
ds.filter(lambda x: x > 5).take(5)
# -> Map Progress: 100%|████████████████████| 200/200 [00:00<00:00, 1859.63it/s]
# -> [6, 8, 10, 12, 14]
ds.flat_map(lambda x: [x, -x]).take(5)
# -> Map Progress: 100%|████████████████████| 200/200 [00:00<00:00, 1568.10it/s]
# -> [0, 0, 2, -2, 4]
To take advantage of vectorized functions, use ``.map_batches()``. Note that you can also implement ``filter`` and ``flat_map`` using ``.map_batches()``, since your map function can return an output batch of any size.
.. code-block:: python
ds = ray.data.range_arrow(10000)
ds = ds.map_batches(
lambda df: df.applymap(lambda x: x * 2), batch_format="pandas")
# -> Map Progress: 100%|████████████████████| 200/200 [00:00<00:00, 1927.62it/s]
ds.take(5)
2021-10-25 12:18:42 -07:00
# -> [{'value': 0}, {'value': 2}, ...]
By default, transformations are executed using Ray tasks. For transformations that require setup, specify ``compute="actors"`` and Ray will use an autoscaling actor pool to execute your transforms instead. The following is an end-to-end example of reading, transforming, and saving batch inference results using Datasets:
.. code-block:: python
# Example of GPU batch inference on an ImageNet model.
def preprocess(image: bytes) -> bytes:
return image
class BatchInferModel:
def __init__(self):
self.model = ImageNetModel()
def __call__(self, batch: pd.DataFrame) -> pd.DataFrame:
return self.model(batch)
ds = ray.data.read_binary_files("s3://bucket/image-dir")
# Preprocess the data.
ds = ds.map(preprocess)
# -> Map Progress: 100%|████████████████████| 200/200 [00:00<00:00, 1123.54it/s]
# Apply GPU batch inference with actors, and assign each actor a GPU using
# ``num_gpus=1`` (any Ray remote decorator argument can be used here).
ds = ds.map_batches(BatchInferModel, compute="actors", batch_size=256, num_gpus=1)
# -> Map Progress (16 actors 4 pending): 100%|██████| 200/200 [00:07, 27.60it/s]
# Save the results.
ds.repartition(1).write_json("s3://bucket/inference-results")
Exchanging datasets
-------------------
Datasets can be passed to Ray tasks or actors and read with ``.iter_batches()`` or ``.iter_rows()``. This does not incur a copy, since the blocks of the Dataset are passed by reference as Ray objects:
.. code-block:: python
@ray.remote
def consume(data: Dataset[int]) -> int:
num_batches = 0
for batch in data.iter_batches():
num_batches += 1
return num_batches
ds = ray.data.range(10000)
ray.get(consume.remote(ds))
# -> 200
Datasets can be split up into disjoint sub-datasets. Locality-aware splitting is supported if you pass in a list of actor handles to the ``split()`` function along with the number of desired splits. This is a common pattern useful for loading and splitting data between distributed training actors:
.. code-block:: python
@ray.remote(num_gpus=1)
class Worker:
def __init__(self, rank: int):
pass
def train(self, shard: ray.data.Dataset[int]) -> int:
for batch in shard.iter_batches(batch_size=256):
pass
return shard.count()
workers = [Worker.remote(i) for i in range(16)]
# -> [Actor(Worker, ...), Actor(Worker, ...), ...]
ds = ray.data.range(10000)
# -> Dataset(num_blocks=200, num_rows=10000, schema=<class 'int'>)
shards = ds.split(n=16, locality_hints=workers)
# -> [Dataset(num_blocks=13, num_rows=650, schema=<class 'int'>),
# Dataset(num_blocks=13, num_rows=650, schema=<class 'int'>), ...]
ray.get([w.train.remote(s) for s in shards])
# -> [650, 650, ...]
Custom datasources
------------------
Datasets can read and write in parallel to `custom datasources <package-ref.html#custom-datasource-api>`__ defined in Python.
.. code-block:: python
# Read from a custom datasource.
ds = ray.data.read_datasource(YourCustomDatasource(), **read_args)
# Write to a custom datasource.
ds.write_datasource(YourCustomDatasource(), **write_args)
Contributing
------------
Contributions to Datasets are `welcome <https://docs.ray.io/en/master/development.html#python-develop>`__! There are many potential improvements, including:
- Supporting more datasources and transforms.
- Integration with more ecosystem libraries.
- Adding features that require partitioning such as groupby() and join().
- Performance optimizations.