ray/rllib/agents/a3c/tests/test_a2c.py

58 lines
1.8 KiB
Python
Raw Normal View History

import unittest
import ray
import ray.rllib.agents.a3c as a3c
from ray.rllib.utils.test_utils import check_compute_single_action, \
framework_iterator
class TestA2C(unittest.TestCase):
"""Sanity tests for A2C exec impl."""
def setUp(self):
ray.init(num_cpus=4)
def tearDown(self):
ray.shutdown()
def test_a2c_compilation(self):
"""Test whether an A2CTrainer can be built with both frameworks."""
config = a3c.DEFAULT_CONFIG.copy()
config["num_workers"] = 2
config["num_envs_per_worker"] = 2
num_iterations = 1
# Test against all frameworks.
for fw in framework_iterator(config, ("tf", "torch")):
config["sample_async"] = fw == "tf"
for env in ["PongDeterministic-v0"]:
trainer = a3c.A2CTrainer(config=config, env=env)
for i in range(num_iterations):
results = trainer.train()
print(results)
check_compute_single_action(trainer)
def test_a2c_exec_impl(ray_start_regular):
config = {"min_iter_time_s": 0}
for _ in framework_iterator(config, ("tf", "torch")):
trainer = a3c.A2CTrainer(env="CartPole-v0", config=config)
assert isinstance(trainer.train(), dict)
check_compute_single_action(trainer)
def test_a2c_exec_impl_microbatch(ray_start_regular):
config = {
"min_iter_time_s": 0,
"microbatch_size": 10,
}
for _ in framework_iterator(config, ("tf", "torch")):
trainer = a3c.A2CTrainer(env="CartPole-v0", config=config)
assert isinstance(trainer.train(), dict)
check_compute_single_action(trainer)
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))