ray/test/actor_test.py

1745 lines
60 KiB
Python
Raw Normal View History

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import random
import numpy as np
import os
import sys
import time
import unittest
import ray
import ray.test.test_utils
class ActorAPI(unittest.TestCase):
def tearDown(self):
ray.worker.cleanup()
def testKeywordArgs(self):
ray.init(num_workers=0, driver_mode=ray.SILENT_MODE)
@ray.remote
class Actor(object):
def __init__(self, arg0, arg1=1, arg2="a"):
self.arg0 = arg0
self.arg1 = arg1
self.arg2 = arg2
def get_values(self, arg0, arg1=2, arg2="b"):
return self.arg0 + arg0, self.arg1 + arg1, self.arg2 + arg2
actor = Actor.remote(0)
self.assertEqual(ray.get(actor.get_values.remote(1)), (1, 3, "ab"))
actor = Actor.remote(1, 2)
self.assertEqual(ray.get(actor.get_values.remote(2, 3)), (3, 5, "ab"))
actor = Actor.remote(1, 2, "c")
self.assertEqual(ray.get(actor.get_values.remote(2, 3, "d")),
(3, 5, "cd"))
actor = Actor.remote(1, arg2="c")
self.assertEqual(ray.get(actor.get_values.remote(0, arg2="d")),
(1, 3, "cd"))
self.assertEqual(ray.get(actor.get_values.remote(0, arg2="d", arg1=0)),
(1, 1, "cd"))
actor = Actor.remote(1, arg2="c", arg1=2)
self.assertEqual(ray.get(actor.get_values.remote(0, arg2="d")),
(1, 4, "cd"))
self.assertEqual(ray.get(actor.get_values.remote(0, arg2="d", arg1=0)),
(1, 2, "cd"))
# Make sure we get an exception if the constructor is called
# incorrectly.
with self.assertRaises(Exception):
actor = Actor.remote()
with self.assertRaises(Exception):
actor = Actor.remote(0, 1, 2, arg3=3)
# Make sure we get an exception if the method is called incorrectly.
actor = Actor.remote(1)
with self.assertRaises(Exception):
ray.get(actor.get_values.remote())
def testVariableNumberOfArgs(self):
ray.init(num_workers=0)
@ray.remote
class Actor(object):
def __init__(self, arg0, arg1=1, *args):
self.arg0 = arg0
self.arg1 = arg1
self.args = args
def get_values(self, arg0, arg1=2, *args):
return self.arg0 + arg0, self.arg1 + arg1, self.args, args
actor = Actor.remote(0)
self.assertEqual(ray.get(actor.get_values.remote(1)), (1, 3, (), ()))
actor = Actor.remote(1, 2)
self.assertEqual(ray.get(actor.get_values.remote(2, 3)),
(3, 5, (), ()))
actor = Actor.remote(1, 2, "c")
self.assertEqual(ray.get(actor.get_values.remote(2, 3, "d")),
(3, 5, ("c",), ("d",)))
actor = Actor.remote(1, 2, "a", "b", "c", "d")
self.assertEqual(ray.get(actor.get_values.remote(2, 3, 1, 2, 3, 4)),
(3, 5, ("a", "b", "c", "d"), (1, 2, 3, 4)))
@ray.remote
class Actor(object):
def __init__(self, *args):
self.args = args
def get_values(self, *args):
return self.args, args
a = Actor.remote()
self.assertEqual(ray.get(a.get_values.remote()), ((), ()))
a = Actor.remote(1)
self.assertEqual(ray.get(a.get_values.remote(2)), ((1,), (2,)))
a = Actor.remote(1, 2)
self.assertEqual(ray.get(a.get_values.remote(3, 4)), ((1, 2), (3, 4)))
def testNoArgs(self):
ray.init(num_workers=0)
@ray.remote
class Actor(object):
def __init__(self):
pass
def get_values(self):
pass
actor = Actor.remote()
self.assertEqual(ray.get(actor.get_values.remote()), None)
def testNoConstructor(self):
# If no __init__ method is provided, that should not be a problem.
ray.init(num_workers=0)
@ray.remote
class Actor(object):
def get_values(self):
pass
actor = Actor.remote()
self.assertEqual(ray.get(actor.get_values.remote()), None)
def testCustomClasses(self):
ray.init(num_workers=0)
class Foo(object):
def __init__(self, x):
self.x = x
@ray.remote
class Actor(object):
def __init__(self, f2):
self.f1 = Foo(1)
self.f2 = f2
def get_values1(self):
return self.f1, self.f2
def get_values2(self, f3):
return self.f1, self.f2, f3
actor = Actor.remote(Foo(2))
results1 = ray.get(actor.get_values1.remote())
self.assertEqual(results1[0].x, 1)
self.assertEqual(results1[1].x, 2)
results2 = ray.get(actor.get_values2.remote(Foo(3)))
self.assertEqual(results2[0].x, 1)
self.assertEqual(results2[1].x, 2)
self.assertEqual(results2[2].x, 3)
def testCachingActors(self):
# Test defining actors before ray.init() has been called.
@ray.remote
class Foo(object):
def __init__(self):
pass
def get_val(self):
return 3
# Check that we can't actually create actors before ray.init() has been
# called.
with self.assertRaises(Exception):
f = Foo.remote()
ray.init(num_workers=0)
f = Foo.remote()
self.assertEqual(ray.get(f.get_val.remote()), 3)
def testDecoratorArgs(self):
ray.init(num_workers=0, driver_mode=ray.SILENT_MODE)
# This is an invalid way of using the actor decorator.
with self.assertRaises(Exception):
@ray.remote()
class Actor(object):
def __init__(self):
pass
# This is an invalid way of using the actor decorator.
with self.assertRaises(Exception):
@ray.remote(invalid_kwarg=0) # noqa: F811
class Actor(object):
def __init__(self):
pass
# This is an invalid way of using the actor decorator.
with self.assertRaises(Exception):
@ray.remote(num_cpus=0, invalid_kwarg=0) # noqa: F811
class Actor(object):
def __init__(self):
pass
# This is a valid way of using the decorator.
@ray.remote(num_cpus=1) # noqa: F811
class Actor(object):
def __init__(self):
pass
# This is a valid way of using the decorator.
@ray.remote(num_gpus=1) # noqa: F811
class Actor(object):
def __init__(self):
pass
# This is a valid way of using the decorator.
@ray.remote(num_cpus=1, num_gpus=1) # noqa: F811
class Actor(object):
def __init__(self):
pass
def testRandomIDGeneration(self):
ray.init(num_workers=0)
@ray.remote
class Foo(object):
def __init__(self):
pass
# Make sure that seeding numpy does not interfere with the generation
# of actor IDs.
np.random.seed(1234)
random.seed(1234)
f1 = Foo.remote()
np.random.seed(1234)
random.seed(1234)
f2 = Foo.remote()
self.assertNotEqual(f1._ray_actor_id.id(), f2._ray_actor_id.id())
def testActorClassName(self):
ray.init(num_workers=0)
@ray.remote
class Foo(object):
def __init__(self):
pass
Foo.remote()
r = ray.worker.global_worker.redis_client
actor_keys = r.keys("ActorClass*")
self.assertEqual(len(actor_keys), 1)
actor_class_info = r.hgetall(actor_keys[0])
self.assertEqual(actor_class_info[b"class_name"], b"Foo")
self.assertEqual(actor_class_info[b"module"], b"__main__")
def testMultipleReturnValues(self):
ray.init(num_workers=0)
@ray.remote
class Foo(object):
def method0(self):
return 1
@ray.method(num_return_vals=1)
def method1(self):
return 1
@ray.method(num_return_vals=2)
def method2(self):
return 1, 2
@ray.method(num_return_vals=3)
def method3(self):
return 1, 2, 3
f = Foo.remote()
id0 = f.method0.remote()
self.assertEqual(ray.get(id0), 1)
id1 = f.method1.remote()
self.assertEqual(ray.get(id1), 1)
id2a, id2b = f.method2.remote()
self.assertEqual(ray.get([id2a, id2b]), [1, 2])
id3a, id3b, id3c = f.method3.remote()
self.assertEqual(ray.get([id3a, id3b, id3c]), [1, 2, 3])
class ActorMethods(unittest.TestCase):
def tearDown(self):
ray.worker.cleanup()
def testDefineActor(self):
ray.init()
@ray.remote
class Test(object):
def __init__(self, x):
self.x = x
def f(self, y):
return self.x + y
t = Test.remote(2)
self.assertEqual(ray.get(t.f.remote(1)), 3)
# Make sure that calling an actor method directly raises an exception.
with self.assertRaises(Exception):
t.f(1)
def testActorDeletion(self):
ray.init(num_workers=0)
# Make sure that when an actor handles goes out of scope, the actor
# destructor is called.
@ray.remote
class Actor(object):
def getpid(self):
return os.getpid()
a = Actor.remote()
pid = ray.get(a.getpid.remote())
a = None
ray.test.test_utils.wait_for_pid_to_exit(pid)
actors = [Actor.remote() for _ in range(10)]
pids = ray.get([a.getpid.remote() for a in actors])
a = None
actors = None
[ray.test.test_utils.wait_for_pid_to_exit(pid) for pid in pids]
@ray.remote
class Actor(object):
def method(self):
return 1
# Make sure that if we create an actor and call a method on it
# immediately, the actor doesn't get killed before the method is
# called.
self.assertEqual(ray.get(Actor.remote().method.remote()), 1)
def testActorDeletionWithGPUs(self):
ray.init(num_workers=0, num_gpus=1)
# When an actor that uses a GPU exits, make sure that the GPU resources
# are released.
@ray.remote(num_gpus=1)
class Actor(object):
def getpid(self):
return os.getpid()
for _ in range(5):
# If we can successfully create an actor, that means that enough
# GPU resources are available.
a = Actor.remote()
pid = ray.get(a.getpid.remote())
# Make sure that we can't create another actor.
with self.assertRaises(Exception):
Actor.remote()
# Let the actor go out of scope, and wait for it to exit.
a = None
ray.test.test_utils.wait_for_pid_to_exit(pid)
def testActorState(self):
ray.init()
@ray.remote
class Counter(object):
def __init__(self):
self.value = 0
def increase(self):
self.value += 1
def value(self):
return self.value
c1 = Counter.remote()
c1.increase.remote()
self.assertEqual(ray.get(c1.value.remote()), 1)
c2 = Counter.remote()
c2.increase.remote()
c2.increase.remote()
self.assertEqual(ray.get(c2.value.remote()), 2)
def testMultipleActors(self):
# Create a bunch of actors and call a bunch of methods on all of them.
ray.init(num_workers=0)
@ray.remote
class Counter(object):
def __init__(self, value):
self.value = value
def increase(self):
self.value += 1
return self.value
def reset(self):
self.value = 0
num_actors = 20
num_increases = 50
# Create multiple actors.
actors = [Counter.remote(i) for i in range(num_actors)]
results = []
# Call each actor's method a bunch of times.
for i in range(num_actors):
results += [actors[i].increase.remote()
for _ in range(num_increases)]
result_values = ray.get(results)
for i in range(num_actors):
self.assertEqual(
result_values[(num_increases * i):(num_increases * (i + 1))],
list(range(i + 1, num_increases + i + 1)))
# Reset the actor values.
[actor.reset.remote() for actor in actors]
# Interweave the method calls on the different actors.
results = []
for j in range(num_increases):
results += [actor.increase.remote() for actor in actors]
result_values = ray.get(results)
for j in range(num_increases):
self.assertEqual(
result_values[(num_actors * j):(num_actors * (j + 1))],
num_actors * [j + 1])
class ActorNesting(unittest.TestCase):
def tearDown(self):
ray.worker.cleanup()
def testRemoteFunctionWithinActor(self):
# Make sure we can use remote funtions within actors.
ray.init(num_cpus=100)
# Create some values to close over.
val1 = 1
val2 = 2
@ray.remote
def f(x):
return val1 + x
@ray.remote
def g(x):
return ray.get(f.remote(x))
@ray.remote
class Actor(object):
def __init__(self, x):
self.x = x
self.y = val2
self.object_ids = [f.remote(i) for i in range(5)]
self.values2 = ray.get([f.remote(i) for i in range(5)])
def get_values(self):
return self.x, self.y, self.object_ids, self.values2
def f(self):
return [f.remote(i) for i in range(5)]
def g(self):
return ray.get([g.remote(i) for i in range(5)])
def h(self, object_ids):
return ray.get(object_ids)
actor = Actor.remote(1)
values = ray.get(actor.get_values.remote())
self.assertEqual(values[0], 1)
self.assertEqual(values[1], val2)
self.assertEqual(ray.get(values[2]), list(range(1, 6)))
self.assertEqual(values[3], list(range(1, 6)))
self.assertEqual(ray.get(ray.get(actor.f.remote())), list(range(1, 6)))
self.assertEqual(ray.get(actor.g.remote()), list(range(1, 6)))
self.assertEqual(
ray.get(actor.h.remote([f.remote(i) for i in range(5)])),
list(range(1, 6)))
def testDefineActorWithinActor(self):
# Make sure we can use remote funtions within actors.
ray.init(num_cpus=10)
@ray.remote
class Actor1(object):
def __init__(self, x):
self.x = x
def new_actor(self, z):
@ray.remote
class Actor2(object):
def __init__(self, x):
self.x = x
def get_value(self):
return self.x
self.actor2 = Actor2.remote(z)
def get_values(self, z):
self.new_actor(z)
return self.x, ray.get(self.actor2.get_value.remote())
actor1 = Actor1.remote(3)
self.assertEqual(ray.get(actor1.get_values.remote(5)), (3, 5))
def testUseActorWithinActor(self):
# Make sure we can use actors within actors.
ray.init(num_cpus=10)
@ray.remote
class Actor1(object):
def __init__(self, x):
self.x = x
def get_val(self):
return self.x
@ray.remote
class Actor2(object):
def __init__(self, x, y):
self.x = x
self.actor1 = Actor1.remote(y)
def get_values(self, z):
return self.x, ray.get(self.actor1.get_val.remote())
actor2 = Actor2.remote(3, 4)
self.assertEqual(ray.get(actor2.get_values.remote(5)), (3, 4))
def testDefineActorWithinRemoteFunction(self):
# Make sure we can define and actors within remote funtions.
ray.init(num_cpus=10)
@ray.remote
def f(x, n):
@ray.remote
class Actor1(object):
def __init__(self, x):
self.x = x
def get_value(self):
return self.x
actor = Actor1.remote(x)
return ray.get([actor.get_value.remote() for _ in range(n)])
self.assertEqual(ray.get(f.remote(3, 1)), [3])
self.assertEqual(ray.get([f.remote(i, 20) for i in range(10)]),
[20 * [i] for i in range(10)])
def testUseActorWithinRemoteFunction(self):
# Make sure we can create and use actors within remote funtions.
ray.init(num_cpus=10)
@ray.remote
class Actor1(object):
def __init__(self, x):
self.x = x
def get_values(self):
return self.x
@ray.remote
def f(x):
actor = Actor1.remote(x)
return ray.get(actor.get_values.remote())
self.assertEqual(ray.get(f.remote(3)), 3)
def testActorImportCounter(self):
# This is mostly a test of the export counters to make sure that when
# an actor is imported, all of the necessary remote functions have been
# imported.
ray.init(num_cpus=10)
# Export a bunch of remote functions.
num_remote_functions = 50
for i in range(num_remote_functions):
@ray.remote
def f():
return i
@ray.remote
def g():
@ray.remote
class Actor(object):
def __init__(self):
# This should use the last version of f.
self.x = ray.get(f.remote())
def get_val(self):
return self.x
actor = Actor.remote()
return ray.get(actor.get_val.remote())
self.assertEqual(ray.get(g.remote()), num_remote_functions - 1)
class ActorInheritance(unittest.TestCase):
def tearDown(self):
ray.worker.cleanup()
def testInheritActorFromClass(self):
# Make sure we can define an actor by inheriting from a regular class.
# Note that actors cannot inherit from other actors.
ray.init()
class Foo(object):
def __init__(self, x):
self.x = x
def f(self):
return self.x
def g(self, y):
return self.x + y
@ray.remote
class Actor(Foo):
def __init__(self, x):
Foo.__init__(self, x)
def get_value(self):
return self.f()
actor = Actor.remote(1)
self.assertEqual(ray.get(actor.get_value.remote()), 1)
self.assertEqual(ray.get(actor.g.remote(5)), 6)
class ActorSchedulingProperties(unittest.TestCase):
def tearDown(self):
ray.worker.cleanup()
def testRemoteFunctionsNotScheduledOnActors(self):
# Make sure that regular remote functions are not scheduled on actors.
ray.init(num_workers=0)
@ray.remote
class Actor(object):
def __init__(self):
pass
def get_id(self):
return ray.worker.global_worker.worker_id
a = Actor.remote()
actor_id = ray.get(a.get_id.remote())
@ray.remote
def f():
return ray.worker.global_worker.worker_id
resulting_ids = ray.get([f.remote() for _ in range(100)])
self.assertNotIn(actor_id, resulting_ids)
class ActorsOnMultipleNodes(unittest.TestCase):
def tearDown(self):
ray.worker.cleanup()
def testActorsOnNodesWithNoCPUs(self):
ray.init(num_cpus=0)
@ray.remote
class Foo(object):
def __init__(self):
pass
with self.assertRaises(Exception):
Foo.remote()
def testActorLoadBalancing(self):
num_local_schedulers = 3
ray.worker._init(start_ray_local=True, num_workers=0,
num_local_schedulers=num_local_schedulers)
@ray.remote
class Actor1(object):
def __init__(self):
pass
def get_location(self):
return ray.worker.global_worker.plasma_client.store_socket_name
# Create a bunch of actors.
num_actors = 30
num_attempts = 20
minimum_count = 5
# Make sure that actors are spread between the local schedulers.
attempts = 0
while attempts < num_attempts:
actors = [Actor1.remote() for _ in range(num_actors)]
locations = ray.get([actor.get_location.remote()
for actor in actors])
names = set(locations)
counts = [locations.count(name) for name in names]
print("Counts are {}.".format(counts))
if (len(names) == num_local_schedulers and
all([count >= minimum_count for count in counts])):
break
attempts += 1
self.assertLess(attempts, num_attempts)
# Make sure we can get the results of a bunch of tasks.
results = []
for _ in range(1000):
index = np.random.randint(num_actors)
results.append(actors[index].get_location.remote())
ray.get(results)
class ActorsWithGPUs(unittest.TestCase):
def tearDown(self):
ray.worker.cleanup()
def testActorGPUs(self):
num_local_schedulers = 3
num_gpus_per_scheduler = 4
ray.worker._init(
start_ray_local=True, num_workers=0,
num_local_schedulers=num_local_schedulers,
num_gpus=(num_local_schedulers * [num_gpus_per_scheduler]))
@ray.remote(num_gpus=1)
class Actor1(object):
def __init__(self):
self.gpu_ids = ray.get_gpu_ids()
def get_location_and_ids(self):
assert ray.get_gpu_ids() == self.gpu_ids
return (
ray.worker.global_worker.plasma_client.store_socket_name,
tuple(self.gpu_ids))
# Create one actor per GPU.
actors = [Actor1.remote() for _
in range(num_local_schedulers * num_gpus_per_scheduler)]
# Make sure that no two actors are assigned to the same GPU.
locations_and_ids = ray.get([actor.get_location_and_ids.remote()
for actor in actors])
node_names = set([location for location, gpu_id in locations_and_ids])
self.assertEqual(len(node_names), num_local_schedulers)
location_actor_combinations = []
for node_name in node_names:
for gpu_id in range(num_gpus_per_scheduler):
location_actor_combinations.append((node_name, (gpu_id,)))
self.assertEqual(set(locations_and_ids),
set(location_actor_combinations))
# Creating a new actor should fail because all of the GPUs are being
# used.
with self.assertRaises(Exception):
Actor1.remote()
def testActorMultipleGPUs(self):
num_local_schedulers = 3
num_gpus_per_scheduler = 5
ray.worker._init(
start_ray_local=True, num_workers=0,
num_local_schedulers=num_local_schedulers,
num_gpus=(num_local_schedulers * [num_gpus_per_scheduler]))
@ray.remote(num_gpus=2)
class Actor1(object):
def __init__(self):
self.gpu_ids = ray.get_gpu_ids()
def get_location_and_ids(self):
return (
ray.worker.global_worker.plasma_client.store_socket_name,
tuple(self.gpu_ids))
# Create some actors.
actors1 = [Actor1.remote() for _ in range(num_local_schedulers * 2)]
# Make sure that no two actors are assigned to the same GPU.
locations_and_ids = ray.get([actor.get_location_and_ids.remote()
for actor in actors1])
node_names = set([location for location, gpu_id in locations_and_ids])
self.assertEqual(len(node_names), num_local_schedulers)
# Keep track of which GPU IDs are being used for each location.
gpus_in_use = {node_name: [] for node_name in node_names}
for location, gpu_ids in locations_and_ids:
gpus_in_use[location].extend(gpu_ids)
for node_name in node_names:
self.assertEqual(len(set(gpus_in_use[node_name])), 4)
# Creating a new actor should fail because all of the GPUs are being
# used.
with self.assertRaises(Exception):
Actor1.remote()
# We should be able to create more actors that use only a single GPU.
@ray.remote(num_gpus=1)
class Actor2(object):
def __init__(self):
self.gpu_ids = ray.get_gpu_ids()
def get_location_and_ids(self):
return (
ray.worker.global_worker.plasma_client.store_socket_name,
tuple(self.gpu_ids))
# Create some actors.
actors2 = [Actor2.remote() for _ in range(num_local_schedulers)]
# Make sure that no two actors are assigned to the same GPU.
locations_and_ids = ray.get([actor.get_location_and_ids.remote()
for actor in actors2])
self.assertEqual(node_names,
set([location for location, gpu_id
in locations_and_ids]))
for location, gpu_ids in locations_and_ids:
gpus_in_use[location].extend(gpu_ids)
for node_name in node_names:
self.assertEqual(len(gpus_in_use[node_name]), 5)
self.assertEqual(set(gpus_in_use[node_name]), set(range(5)))
# Creating a new actor should fail because all of the GPUs are being
# used.
with self.assertRaises(Exception):
Actor2.remote()
def testActorDifferentNumbersOfGPUs(self):
# Test that we can create actors on two nodes that have different
# numbers of GPUs.
ray.worker._init(start_ray_local=True, num_workers=0,
num_local_schedulers=3, num_gpus=[0, 5, 10])
@ray.remote(num_gpus=1)
class Actor1(object):
def __init__(self):
self.gpu_ids = ray.get_gpu_ids()
def get_location_and_ids(self):
return (
ray.worker.global_worker.plasma_client.store_socket_name,
tuple(self.gpu_ids))
# Create some actors.
actors = [Actor1.remote() for _ in range(0 + 5 + 10)]
# Make sure that no two actors are assigned to the same GPU.
locations_and_ids = ray.get([actor.get_location_and_ids.remote()
for actor in actors])
node_names = set([location for location, gpu_id in locations_and_ids])
self.assertEqual(len(node_names), 2)
for node_name in node_names:
node_gpu_ids = [gpu_id for location, gpu_id in locations_and_ids
if location == node_name]
self.assertIn(len(node_gpu_ids), [5, 10])
self.assertEqual(set(node_gpu_ids),
set([(i,) for i in range(len(node_gpu_ids))]))
# Creating a new actor should fail because all of the GPUs are being
# used.
with self.assertRaises(Exception):
Actor1.remote()
def testActorMultipleGPUsFromMultipleTasks(self):
num_local_schedulers = 10
num_gpus_per_scheduler = 10
ray.worker._init(
start_ray_local=True, num_workers=0,
num_local_schedulers=num_local_schedulers, redirect_output=True,
num_gpus=(num_local_schedulers * [num_gpus_per_scheduler]))
@ray.remote
def create_actors(n):
@ray.remote(num_gpus=1)
class Actor(object):
def __init__(self):
self.gpu_ids = ray.get_gpu_ids()
def get_location_and_ids(self):
return ((ray.worker.global_worker.plasma_client
.store_socket_name),
tuple(self.gpu_ids))
# Create n actors.
for _ in range(n):
Actor.remote()
ray.get([create_actors.remote(num_gpus_per_scheduler)
for _ in range(num_local_schedulers)])
@ray.remote(num_gpus=1)
class Actor(object):
def __init__(self):
self.gpu_ids = ray.get_gpu_ids()
def get_location_and_ids(self):
return (
ray.worker.global_worker.plasma_client.store_socket_name,
tuple(self.gpu_ids))
# All the GPUs should be used up now.
with self.assertRaises(Exception):
Actor.remote()
@unittest.skipIf(sys.version_info < (3, 0), "This test requires Python 3.")
def testActorsAndTasksWithGPUs(self):
num_local_schedulers = 3
num_gpus_per_scheduler = 6
ray.worker._init(
start_ray_local=True, num_workers=0,
num_local_schedulers=num_local_schedulers,
num_cpus=num_gpus_per_scheduler,
num_gpus=(num_local_schedulers * [num_gpus_per_scheduler]))
def check_intervals_non_overlapping(list_of_intervals):
for i in range(len(list_of_intervals)):
for j in range(i):
first_interval = list_of_intervals[i]
second_interval = list_of_intervals[j]
# Check that list_of_intervals[i] and list_of_intervals[j]
# don't overlap.
2017-07-31 22:30:46 -07:00
self.assertLess(first_interval[0], first_interval[1])
self.assertLess(second_interval[0], second_interval[1])
intervals_nonoverlapping = (
first_interval[1] <= second_interval[0] or
second_interval[1] <= first_interval[0])
assert intervals_nonoverlapping, (
"Intervals {} and {} are overlapping."
.format(first_interval, second_interval))
@ray.remote(num_gpus=1)
def f1():
t1 = time.monotonic()
time.sleep(0.1)
t2 = time.monotonic()
gpu_ids = ray.get_gpu_ids()
assert len(gpu_ids) == 1
assert gpu_ids[0] in range(num_gpus_per_scheduler)
return (ray.worker.global_worker.plasma_client.store_socket_name,
tuple(gpu_ids), [t1, t2])
@ray.remote(num_gpus=2)
def f2():
t1 = time.monotonic()
time.sleep(0.1)
t2 = time.monotonic()
gpu_ids = ray.get_gpu_ids()
assert len(gpu_ids) == 2
assert gpu_ids[0] in range(num_gpus_per_scheduler)
assert gpu_ids[1] in range(num_gpus_per_scheduler)
return (ray.worker.global_worker.plasma_client.store_socket_name,
tuple(gpu_ids), [t1, t2])
@ray.remote(num_gpus=1)
class Actor1(object):
def __init__(self):
self.gpu_ids = ray.get_gpu_ids()
assert len(self.gpu_ids) == 1
assert self.gpu_ids[0] in range(num_gpus_per_scheduler)
def get_location_and_ids(self):
assert ray.get_gpu_ids() == self.gpu_ids
return (
ray.worker.global_worker.plasma_client.store_socket_name,
tuple(self.gpu_ids))
def locations_to_intervals_for_many_tasks():
# Launch a bunch of GPU tasks.
locations_ids_and_intervals = ray.get(
[f1.remote() for _
in range(5 * num_local_schedulers * num_gpus_per_scheduler)] +
[f2.remote() for _
in range(5 * num_local_schedulers * num_gpus_per_scheduler)] +
[f1.remote() for _
in range(5 * num_local_schedulers * num_gpus_per_scheduler)])
locations_to_intervals = collections.defaultdict(lambda: [])
for location, gpu_ids, interval in locations_ids_and_intervals:
for gpu_id in gpu_ids:
locations_to_intervals[(location, gpu_id)].append(interval)
return locations_to_intervals
# Run a bunch of GPU tasks.
locations_to_intervals = locations_to_intervals_for_many_tasks()
# Make sure that all GPUs were used.
self.assertEqual(len(locations_to_intervals),
num_local_schedulers * num_gpus_per_scheduler)
# For each GPU, verify that the set of tasks that used this specific
# GPU did not overlap in time.
for locations in locations_to_intervals:
check_intervals_non_overlapping(locations_to_intervals[locations])
# Create an actor that uses a GPU.
a = Actor1.remote()
actor_location = ray.get(a.get_location_and_ids.remote())
actor_location = (actor_location[0], actor_location[1][0])
# This check makes sure that actor_location is formatted the same way
# that the keys of locations_to_intervals are formatted.
self.assertIn(actor_location, locations_to_intervals)
# Run a bunch of GPU tasks.
locations_to_intervals = locations_to_intervals_for_many_tasks()
# Make sure that all but one of the GPUs were used.
self.assertEqual(len(locations_to_intervals),
num_local_schedulers * num_gpus_per_scheduler - 1)
# For each GPU, verify that the set of tasks that used this specific
# GPU did not overlap in time.
for locations in locations_to_intervals:
check_intervals_non_overlapping(locations_to_intervals[locations])
# Make sure that the actor's GPU was not used.
self.assertNotIn(actor_location, locations_to_intervals)
# Create several more actors that use GPUs.
actors = [Actor1.remote() for _ in range(3)]
actor_locations = ray.get([actor.get_location_and_ids.remote()
for actor in actors])
# Run a bunch of GPU tasks.
locations_to_intervals = locations_to_intervals_for_many_tasks()
# Make sure that all but 11 of the GPUs were used.
self.assertEqual(len(locations_to_intervals),
num_local_schedulers * num_gpus_per_scheduler - 1 - 3)
# For each GPU, verify that the set of tasks that used this specific
# GPU did not overlap in time.
for locations in locations_to_intervals:
check_intervals_non_overlapping(locations_to_intervals[locations])
# Make sure that the GPUs were not used.
self.assertNotIn(actor_location, locations_to_intervals)
for location in actor_locations:
self.assertNotIn(location, locations_to_intervals)
# Create more actors to fill up all the GPUs.
more_actors = [Actor1.remote() for _ in
range(num_local_schedulers *
num_gpus_per_scheduler - 1 - 3)]
# Wait for the actors to finish being created.
ray.get([actor.get_location_and_ids.remote() for actor in more_actors])
# Now if we run some GPU tasks, they should not be scheduled.
results = [f1.remote() for _ in range(30)]
ready_ids, remaining_ids = ray.wait(results, timeout=1000)
self.assertEqual(len(ready_ids), 0)
def testActorsAndTasksWithGPUsVersionTwo(self):
# Create tasks and actors that both use GPUs and make sure that they
# are given different GPUs
ray.init(num_cpus=10, num_gpus=10)
@ray.remote(num_gpus=1)
def f():
time.sleep(4)
gpu_ids = ray.get_gpu_ids()
assert len(gpu_ids) == 1
return gpu_ids[0]
@ray.remote(num_gpus=1)
class Actor(object):
def __init__(self):
self.gpu_ids = ray.get_gpu_ids()
assert len(self.gpu_ids) == 1
def get_gpu_id(self):
assert ray.get_gpu_ids() == self.gpu_ids
return self.gpu_ids[0]
results = []
actors = []
for _ in range(5):
results.append(f.remote())
a = Actor.remote()
results.append(a.get_gpu_id.remote())
# Prevent the actor handle from going out of scope so that its GPU
# resources don't get released.
actors.append(a)
gpu_ids = ray.get(results)
self.assertEqual(set(gpu_ids), set(range(10)))
@unittest.skipIf(sys.version_info < (3, 0), "This test requires Python 3.")
def testActorsAndTaskResourceBookkeeping(self):
ray.init(num_cpus=1)
@ray.remote
class Foo(object):
def __init__(self):
start = time.monotonic()
time.sleep(0.1)
end = time.monotonic()
self.interval = (start, end)
def get_interval(self):
return self.interval
def sleep(self):
start = time.monotonic()
time.sleep(0.01)
end = time.monotonic()
return start, end
# First make sure that we do not have more actor methods running at a
# time than we have CPUs.
actors = [Foo.remote() for _ in range(4)]
interval_ids = []
interval_ids += [actor.get_interval.remote() for actor in actors]
for _ in range(4):
interval_ids += [actor.sleep.remote() for actor in actors]
# Make sure that the intervals don't overlap.
intervals = ray.get(interval_ids)
intervals.sort(key=lambda x: x[0])
for interval1, interval2 in zip(intervals[:-1], intervals[1:]):
self.assertLess(interval1[0], interval1[1])
self.assertLess(interval1[1], interval2[0])
self.assertLess(interval2[0], interval2[1])
def testBlockingActorTask(self):
ray.init(num_cpus=1, num_gpus=1)
@ray.remote(num_gpus=1)
def f():
return 1
@ray.remote
class Foo(object):
def __init__(self):
pass
def blocking_method(self):
ray.get(f.remote())
# Make sure we can execute a blocking actor method even if there is
# only one CPU.
actor = Foo.remote()
ray.get(actor.blocking_method.remote())
@ray.remote(num_gpus=1)
class GPUFoo(object):
def __init__(self):
pass
def blocking_method(self):
ray.get(f.remote())
# Make sure that we GPU resources are not released when actors block.
actor = GPUFoo.remote()
x_id = actor.blocking_method.remote()
ready_ids, remaining_ids = ray.wait([x_id], timeout=500)
self.assertEqual(ready_ids, [])
self.assertEqual(remaining_ids, [x_id])
class ActorReconstruction(unittest.TestCase):
def tearDown(self):
ray.worker.cleanup()
def testLocalSchedulerDying(self):
ray.worker._init(start_ray_local=True, num_local_schedulers=2,
num_workers=0, redirect_output=True)
@ray.remote
class Counter(object):
def __init__(self):
self.x = 0
def local_plasma(self):
return ray.worker.global_worker.plasma_client.store_socket_name
def inc(self):
self.x += 1
return self.x
local_plasma = ray.worker.global_worker.plasma_client.store_socket_name
# Create an actor that is not on the local scheduler.
actor = Counter.remote()
while ray.get(actor.local_plasma.remote()) == local_plasma:
actor = Counter.remote()
ids = [actor.inc.remote() for _ in range(100)]
# Wait for the last task to finish running.
ray.get(ids[-1])
# Kill the second plasma store to get rid of the cached objects and
# trigger the corresponding local scheduler to exit.
process = ray.services.all_processes[
ray.services.PROCESS_TYPE_PLASMA_STORE][1]
process.kill()
process.wait()
# Get all of the results
results = ray.get(ids)
self.assertEqual(results, list(range(1, 1 + len(results))))
def testManyLocalSchedulersDying(self):
# This test can be made more stressful by increasing the numbers below.
# The total number of actors created will be
# num_actors_at_a_time * num_local_schedulers.
num_local_schedulers = 5
num_actors_at_a_time = 3
num_function_calls_at_a_time = 10
ray.worker._init(start_ray_local=True,
num_local_schedulers=num_local_schedulers,
num_workers=0, redirect_output=True)
@ray.remote
class SlowCounter(object):
def __init__(self):
self.x = 0
def inc(self, duration):
time.sleep(duration)
self.x += 1
return self.x
# Create some initial actors.
actors = [SlowCounter.remote() for _ in range(num_actors_at_a_time)]
# Wait for the actors to start up.
time.sleep(1)
# This is a mapping from actor handles to object IDs returned by
# methods on that actor.
result_ids = collections.defaultdict(lambda: [])
# In a loop we are going to create some actors, run some methods, kill
# a local scheduler, and run some more methods.
for i in range(num_local_schedulers - 1):
# Create some actors.
actors.extend([SlowCounter.remote()
for _ in range(num_actors_at_a_time)])
# Run some methods.
for j in range(len(actors)):
actor = actors[j]
for _ in range(num_function_calls_at_a_time):
result_ids[actor].append(
actor.inc.remote(j ** 2 * 0.000001))
# Kill a plasma store to get rid of the cached objects and trigger
# exit of the corresponding local scheduler. Don't kill the first
# local scheduler since that is the one that the driver is
# connected to.
process = ray.services.all_processes[
ray.services.PROCESS_TYPE_PLASMA_STORE][i + 1]
process.kill()
process.wait()
# Run some more methods.
for j in range(len(actors)):
actor = actors[j]
for _ in range(num_function_calls_at_a_time):
result_ids[actor].append(
actor.inc.remote(j ** 2 * 0.000001))
# Get the results and check that they have the correct values.
for _, result_id_list in result_ids.items():
self.assertEqual(ray.get(result_id_list),
list(range(1, len(result_id_list) + 1)))
def setup_test_checkpointing(self, save_exception=False,
resume_exception=False):
ray.worker._init(start_ray_local=True, num_local_schedulers=2,
num_workers=0, redirect_output=True)
@ray.remote(checkpoint_interval=5)
class Counter(object):
_resume_exception = resume_exception
def __init__(self, save_exception):
self.x = 0
# The number of times that inc has been called. We won't bother
# restoring this in the checkpoint
self.num_inc_calls = 0
self.save_exception = save_exception
def local_plasma(self):
return ray.worker.global_worker.plasma_client.store_socket_name
def inc(self, *xs):
self.num_inc_calls += 1
self.x += 1
return self.x
def get_num_inc_calls(self):
return self.num_inc_calls
def test_restore(self):
# This method will only work if __ray_restore__ has been run.
return self.y
def __ray_save__(self):
if self.save_exception:
raise Exception("Exception raised in checkpoint save")
return self.x, -1
def __ray_restore__(self, checkpoint):
if self._resume_exception:
raise Exception("Exception raised in checkpoint resume")
self.x, val = checkpoint
self.num_inc_calls = 0
# Test that __ray_save__ has been run.
assert val == -1
self.y = self.x
local_plasma = ray.worker.global_worker.plasma_client.store_socket_name
# Create an actor that is not on the local scheduler.
actor = Counter.remote(save_exception)
while ray.get(actor.local_plasma.remote()) == local_plasma:
actor = Counter.remote(save_exception)
args = [ray.put(0) for _ in range(100)]
ids = [actor.inc.remote(*args[i:]) for i in range(100)]
return actor, ids
def testCheckpointing(self):
actor, ids = self.setup_test_checkpointing()
# Wait for the last task to finish running.
ray.get(ids[-1])
# Kill the corresponding plasma store to get rid of the cached objects.
process = ray.services.all_processes[
ray.services.PROCESS_TYPE_PLASMA_STORE][1]
process.kill()
process.wait()
# Get all of the results. TODO(rkn): This currently doesn't work.
# results = ray.get(ids)
# self.assertEqual(results, list(range(1, 1 + len(results))))
self.assertEqual(ray.get(actor.test_restore.remote()), 99)
# The inc method should only have executed once on the new actor (for
# the one method call since the most recent checkpoint).
self.assertEqual(ray.get(actor.get_num_inc_calls.remote()), 1)
def testLostCheckpoint(self):
actor, ids = self.setup_test_checkpointing()
# Wait for the first fraction of tasks to finish running.
ray.get(ids[len(ids) // 10])
actor_key = b"Actor:" + actor._ray_actor_id.id()
for index in ray.actor.get_checkpoint_indices(
ray.worker.global_worker, actor._ray_actor_id.id()):
ray.worker.global_worker.redis_client.hdel(
actor_key, "checkpoint_{}".format(index))
# Kill the corresponding plasma store to get rid of the cached objects.
process = ray.services.all_processes[
ray.services.PROCESS_TYPE_PLASMA_STORE][1]
process.kill()
process.wait()
self.assertEqual(ray.get(actor.inc.remote()), 101)
# Each inc method has been reexecuted once on the new actor.
self.assertEqual(ray.get(actor.get_num_inc_calls.remote()), 101)
# Get all of the results that were previously lost. Because the
# checkpoints were lost, all methods should be reconstructed.
results = ray.get(ids)
self.assertEqual(results, list(range(1, 1 + len(results))))
def testCheckpointException(self):
actor, ids = self.setup_test_checkpointing(save_exception=True)
# Wait for the last task to finish running.
ray.get(ids[-1])
# Kill the corresponding plasma store to get rid of the cached objects.
process = ray.services.all_processes[
ray.services.PROCESS_TYPE_PLASMA_STORE][1]
process.kill()
process.wait()
self.assertEqual(ray.get(actor.inc.remote()), 101)
# Each inc method has been reexecuted once on the new actor, since all
# checkpoint saves failed.
self.assertEqual(ray.get(actor.get_num_inc_calls.remote()), 101)
# Get all of the results that were previously lost. Because the
# checkpoints were lost, all methods should be reconstructed.
results = ray.get(ids)
self.assertEqual(results, list(range(1, 1 + len(results))))
errors = ray.error_info()
# We submitted 101 tasks with a checkpoint interval of 5.
num_checkpoints = 101 // 5
# Each checkpoint task throws an exception when saving during initial
# execution, and then again during re-execution.
self.assertEqual(len([error for error in errors if error[b"type"] ==
b"task"]), num_checkpoints * 2)
def testCheckpointResumeException(self):
actor, ids = self.setup_test_checkpointing(resume_exception=True)
# Wait for the last task to finish running.
ray.get(ids[-1])
# Kill the corresponding plasma store to get rid of the cached objects.
process = ray.services.all_processes[
ray.services.PROCESS_TYPE_PLASMA_STORE][1]
process.kill()
process.wait()
self.assertEqual(ray.get(actor.inc.remote()), 101)
# Each inc method has been reexecuted once on the new actor, since all
# checkpoint resumes failed.
self.assertEqual(ray.get(actor.get_num_inc_calls.remote()), 101)
# Get all of the results that were previously lost. Because the
# checkpoints were lost, all methods should be reconstructed.
results = ray.get(ids)
self.assertEqual(results, list(range(1, 1 + len(results))))
errors = ray.error_info()
# The most recently executed checkpoint task should throw an exception
# when trying to resume. All other checkpoint tasks should reconstruct
# the previous task but throw no errors.
self.assertTrue(len([error for error in errors if error[b"type"] ==
b"task"]) > 0)
class DistributedActorHandles(unittest.TestCase):
def tearDown(self):
ray.worker.cleanup()
def make_counter_actor(self, checkpoint_interval=-1):
ray.init()
@ray.remote(checkpoint_interval=checkpoint_interval)
class Counter(object):
def __init__(self):
self.value = 0
def increase(self):
self.value += 1
return self.value
return Counter.remote()
def testFork(self):
counter = self.make_counter_actor()
num_calls = 1
self.assertEqual(ray.get(counter.increase.remote()), num_calls)
@ray.remote
def fork(counter):
return ray.get(counter.increase.remote())
# Fork once.
num_calls += 1
self.assertEqual(ray.get(fork.remote(counter)), num_calls)
num_calls += 1
self.assertEqual(ray.get(counter.increase.remote()), num_calls)
# Fork num_iters times.
num_iters = 100
num_calls += num_iters
ray.get([fork.remote(counter) for _ in range(num_iters)])
num_calls += 1
self.assertEqual(ray.get(counter.increase.remote()), num_calls)
def testForkConsistency(self):
counter = self.make_counter_actor()
@ray.remote
def fork_many_incs(counter, num_incs):
x = None
for _ in range(num_incs):
x = counter.increase.remote()
# Only call ray.get() on the last task submitted.
return ray.get(x)
num_incs = 100
# Fork once.
num_calls = num_incs
self.assertEqual(ray.get(fork_many_incs.remote(counter, num_incs)),
num_calls)
num_calls += 1
self.assertEqual(ray.get(counter.increase.remote()), num_calls)
# Fork num_iters times.
num_iters = 10
num_calls += num_iters * num_incs
ray.get([fork_many_incs.remote(counter, num_incs) for _ in
range(num_iters)])
# Check that we ensured per-handle serialization.
num_calls += 1
self.assertEqual(ray.get(counter.increase.remote()), num_calls)
@unittest.skip("Garbage collection for distributed actor handles not "
"implemented.")
def testGarbageCollection(self):
counter = self.make_counter_actor()
@ray.remote
def fork(counter):
for _ in range(10):
x = counter.increase.remote()
time.sleep(0.1)
return ray.get(x)
x = fork.remote(counter)
ray.get(counter.increase.remote())
del counter
print(ray.get(x))
def testCheckpoint(self):
counter = self.make_counter_actor(checkpoint_interval=1)
num_calls = 1
self.assertEqual(ray.get(counter.increase.remote()), num_calls)
@ray.remote
def fork(counter):
return ray.get(counter.increase.remote())
# Passing an actor handle with checkpointing enabled shouldn't be
# allowed yet.
with self.assertRaises(Exception):
fork.remote(counter)
num_calls += 1
self.assertEqual(ray.get(counter.increase.remote()), num_calls)
@unittest.skip("Fork/join consistency not yet implemented.")
def testLocalSchedulerDying(self):
ray.worker._init(start_ray_local=True, num_local_schedulers=2,
num_workers=0, redirect_output=False)
@ray.remote
class Counter(object):
def __init__(self):
self.x = 0
def local_plasma(self):
return ray.worker.global_worker.plasma_client.store_socket_name
def inc(self):
self.x += 1
return self.x
@ray.remote
def foo(counter):
for _ in range(100):
x = counter.inc.remote()
return ray.get(x)
local_plasma = ray.worker.global_worker.plasma_client.store_socket_name
# Create an actor that is not on the local scheduler.
actor = Counter.remote()
while ray.get(actor.local_plasma.remote()) == local_plasma:
actor = Counter.remote()
# Concurrently, submit many tasks to the actor through the original
# handle and the forked handle.
x = foo.remote(actor)
ids = [actor.inc.remote() for _ in range(100)]
# Wait for the last task to finish running.
ray.get(ids[-1])
y = ray.get(x)
# Kill the second plasma store to get rid of the cached objects and
# trigger the corresponding local scheduler to exit.
process = ray.services.all_processes[
ray.services.PROCESS_TYPE_PLASMA_STORE][1]
process.kill()
process.wait()
# Submit a new task. Its results should reflect the tasks submitted
# through both the original handle and the forked handle.
self.assertEqual(ray.get(actor.inc.remote()), y + 1)
def testCallingPutOnActorHandle(self):
ray.worker.init(num_workers=1)
@ray.remote
class Counter(object):
pass
@ray.remote
def f():
return Counter.remote()
@ray.remote
def g():
return [Counter.remote()]
with self.assertRaises(Exception):
ray.put(Counter.remote())
with self.assertRaises(Exception):
ray.get(f.remote())
# The below test is commented out because it currently does not behave
# properly. The call to g.remote() does not raise an exception because
# even though the actor handle cannot be pickled, pyarrow attempts to
# serialize it as a dictionary of its fields which kind of works.
# self.assertRaises(Exception):
# ray.get(g.remote())
def _testNondeterministicReconstruction(self, num_forks,
num_items_per_fork,
num_forks_to_wait):
ray.worker._init(start_ray_local=True, num_local_schedulers=2,
num_workers=0, redirect_output=True)
# Make a shared queue.
@ray.remote
class Queue(object):
def __init__(self):
self.queue = []
def local_plasma(self):
return ray.worker.global_worker.plasma_client.store_socket_name
def push(self, item):
self.queue.append(item)
def read(self):
return self.queue
# Schedule the shared queue onto the remote local scheduler.
local_plasma = ray.worker.global_worker.plasma_client.store_socket_name
actor = Queue.remote()
while ray.get(actor.local_plasma.remote()) == local_plasma:
actor = Queue.remote()
# A task that takes in the shared queue and a list of items to enqueue,
# one by one.
@ray.remote
def enqueue(queue, items):
done = None
for item in items:
done = queue.push.remote(item)
# TODO(swang): Return the object ID returned by the last method
# called on the shared queue, so that the caller of enqueue can
# wait for all of the queue methods to complete. This can be
# removed once join consistency is implemented.
return [done]
# Call the enqueue task num_forks times, each with num_items_per_fork
# unique objects to push onto the shared queue.
enqueue_tasks = []
for fork in range(num_forks):
enqueue_tasks.append(enqueue.remote(
actor, [(fork, i) for i in range(num_items_per_fork)]))
# Wait for the forks to complete their tasks.
enqueue_tasks = ray.get(enqueue_tasks)
enqueue_tasks = [fork_ids[0] for fork_ids in enqueue_tasks]
ray.wait(enqueue_tasks, num_returns=num_forks_to_wait)
# Read the queue to get the initial order of execution.
queue = ray.get(actor.read.remote())
# Kill the second plasma store to get rid of the cached objects and
# trigger the corresponding local scheduler to exit.
process = ray.services.all_processes[
ray.services.PROCESS_TYPE_PLASMA_STORE][1]
process.kill()
process.wait()
# Read the queue again and check for deterministic reconstruction.
ray.get(enqueue_tasks)
reconstructed_queue = ray.get(actor.read.remote())
# Make sure the final queue has all items from all forks.
self.assertEqual(len(reconstructed_queue), num_forks *
num_items_per_fork)
# Make sure that the prefix of the final queue matches the queue from
# the initial execution.
self.assertEqual(queue, reconstructed_queue[:len(queue)])
def testNondeterministicReconstruction(self):
self._testNondeterministicReconstruction(10, 100, 10)
@unittest.skip("Nondeterministic reconstruction currently not supported "
"when there are concurrent forks that didn't finish "
"initial execution.")
def testNondeterministicReconstructionConcurrentForks(self):
self._testNondeterministicReconstruction(10, 100, 1)
@unittest.skip("Actor placement currently does not use custom resources.")
class ActorPlacement(unittest.TestCase):
def tearDown(self):
ray.worker.cleanup()
def testCustomLabelPlacement(self):
ray.worker._init(start_ray_local=True, num_local_schedulers=2,
num_workers=0, resources=[{"CustomResource1": 10},
{"CustomResource2": 10}])
@ray.remote(resources={"CustomResource1": 1})
class ResourceActor1(object):
def get_location(self):
return ray.worker.global_worker.plasma_client.store_socket_name
@ray.remote(resources={"CustomResource2": 1})
class ResourceActor2(object):
def get_location(self):
return ray.worker.global_worker.plasma_client.store_socket_name
local_plasma = ray.worker.global_worker.plasma_client.store_socket_name
# Create some actors.
actors1 = [ResourceActor1.remote() for _ in range(10)]
actors2 = [ResourceActor2.remote() for _ in range(10)]
locations1 = ray.get([a.get_location.remote() for a in actors1])
locations2 = ray.get([a.get_location.remote() for a in actors2])
for location in locations1:
self.assertEqual(location, local_plasma)
for location in locations2:
self.assertNotEqual(location, local_plasma)
if __name__ == "__main__":
unittest.main(verbosity=2)