ray/rllib/utils/exploration/tests/test_curiosity.py

161 lines
5.2 KiB
Python
Raw Normal View History

import gym
import gym_minigrid
import numpy as np
import ray
import sys
import unittest
import ray.rllib.agents.ppo as ppo
from ray.rllib.utils.test_utils import framework_iterator
from ray.rllib.utils.numpy import one_hot
from ray.tune import register_env
class OneHotWrapper(gym.core.ObservationWrapper):
def __init__(self, env):
super().__init__(env)
self.observation_space = gym.spaces.Box(
# 11=objects; 6=colors; 3=states
# +4: direction
0.0,
1.0,
shape=(49 * (11 + 6 + 3) + 4, ),
dtype=np.float32)
self.init_x = None
self.init_y = None
self.x_positions = []
self.y_positions = []
def observation(self, obs):
# Debug output: max-x/y positions to watch exploration progress.
if self.step_count == 0:
if self.x_positions:
# max_diff = max(
# np.sqrt((np.array(self.x_positions) - self.init_x) ** 2 + (
# np.array(self.y_positions) - self.init_y) ** 2))
# print("After reset: max delta-x/y={}".format(max_diff))
self.x_positions = []
self.y_positions = []
self.init_x = self.agent_pos[0]
self.init_y = self.agent_pos[1]
# Are we carrying the key?
if self.carrying is not None:
print("Carrying KEY!!")
self.x_positions.append(self.agent_pos[0])
self.y_positions.append(self.agent_pos[1])
# One-hot the last dim into 11, 6, 3 one-hot vectors, then flatten.
objects = one_hot(obs[:, :, 0], depth=11)
colors = one_hot(obs[:, :, 1], depth=6)
states = one_hot(obs[:, :, 2], depth=3)
# Is the door we see open?
for x in range(7):
for y in range(7):
if objects[x, y, 4] == 1.0 and states[x, y, 0] == 1.0:
print("Door OPEN!!")
all_ = np.concatenate([objects, colors, states], -1)
ret = np.reshape(all_, (-1, ))
direction = one_hot(
np.array(self.agent_dir), depth=4).astype(np.float32)
return np.concatenate([ret, direction])
def env_maker(config):
name = config.get("name", "MiniGrid-Empty-5x5-v0")
env = gym.make(name)
# Only use image portion of observation (discard goal and direction).
env = gym_minigrid.wrappers.ImgObsWrapper(env)
env = OneHotWrapper(env)
return env
register_env("mini-grid", env_maker)
CONV_FILTERS = [[16, [11, 11], 3], [32, [9, 9], 3], [64, [5, 5], 3]]
class TestCuriosity(unittest.TestCase):
@classmethod
def setUpClass(cls):
ray.init()
@classmethod
def tearDownClass(cls):
ray.shutdown()
def test_curiosity_on_large_frozen_lake(self):
config = ppo.DEFAULT_CONFIG.copy()
# A very large frozen-lake that's hard for a random policy to solve
# due to 0.0 feedback.
config["env"] = "FrozenLake-v0"
config["env_config"] = {
"desc": [
"SFFFFFFFFFFFFFFF",
"FFFFFFFFFFFFFFFF",
"FFFFFFFFFFFFFFFF",
"FFFFFFFFFFFFFFFF",
"FFFFFFFFFFFFFFFF",
"FFFFFFFFFFFFFFFF",
"FFFFFFFFFFFFFFFF",
"FFFFFFFFFFFFFFFF",
"FFFFFFFFFFFFFFFF",
"FFFFFFFFFFFFFFFF",
"FFFFFFFFFFFFFFFF",
"FFFFFFFFFFFFFFFF",
"FFFFFFFFFFFFFFFF",
"FFFFFFFFFFFFFFFF",
"FFFFFFFFFFFFFFFF",
"FFFFFFFFFFFFFFFG",
],
"is_slippery": False
}
# Limit horizon to make it really hard for non-curious agent to reach
# the goal state.
config["horizon"] = 40
config["num_workers"] = 0 # local only
config["train_batch_size"] = 512
config["num_sgd_iter"] = 10
num_iterations = 30
for _ in framework_iterator(config, frameworks="torch"):
# W/ Curiosity.
config["exploration_config"] = {
"type": "Curiosity",
"feature_dim": 128,
"eta": 0.05,
"sub_exploration": {
"type": "StochasticSampling",
}
}
trainer = ppo.PPOTrainer(config=config)
rewards_w = 0.0
for _ in range(num_iterations):
result = trainer.train()
rewards_w += result["episode_reward_mean"]
print(result)
rewards_w /= num_iterations
trainer.stop()
# W/o Curiosity.
config["exploration_config"] = {
"type": "StochasticSampling",
}
trainer = ppo.PPOTrainer(config=config)
rewards_wo = 0.0
for _ in range(num_iterations):
result = trainer.train()
rewards_wo += result["episode_reward_mean"]
print(result)
rewards_wo /= num_iterations
trainer.stop()
self.assertTrue(rewards_wo == 0.0)
self.assertGreater(rewards_w, 0.1)
if __name__ == "__main__":
import pytest
sys.exit(pytest.main(["-v", __file__]))