2020-08-19 17:49:50 +02:00
|
|
|
|
import gym
|
|
|
|
|
import gym_minigrid
|
2020-08-13 14:14:16 -04:00
|
|
|
|
import numpy as np
|
|
|
|
|
import ray
|
|
|
|
|
import sys
|
|
|
|
|
import unittest
|
|
|
|
|
|
|
|
|
|
import ray.rllib.agents.ppo as ppo
|
2020-08-19 17:49:50 +02:00
|
|
|
|
from ray.rllib.utils.test_utils import framework_iterator
|
|
|
|
|
from ray.rllib.utils.numpy import one_hot
|
|
|
|
|
from ray.tune import register_env
|
2020-08-13 14:14:16 -04:00
|
|
|
|
|
|
|
|
|
|
2020-08-19 17:49:50 +02:00
|
|
|
|
class OneHotWrapper(gym.core.ObservationWrapper):
|
|
|
|
|
def __init__(self, env):
|
|
|
|
|
super().__init__(env)
|
|
|
|
|
self.observation_space = gym.spaces.Box(
|
|
|
|
|
# 11=objects; 6=colors; 3=states
|
|
|
|
|
# +4: direction
|
|
|
|
|
0.0,
|
|
|
|
|
1.0,
|
|
|
|
|
shape=(49 * (11 + 6 + 3) + 4, ),
|
|
|
|
|
dtype=np.float32)
|
|
|
|
|
self.init_x = None
|
|
|
|
|
self.init_y = None
|
|
|
|
|
self.x_positions = []
|
|
|
|
|
self.y_positions = []
|
|
|
|
|
|
|
|
|
|
def observation(self, obs):
|
|
|
|
|
# Debug output: max-x/y positions to watch exploration progress.
|
|
|
|
|
if self.step_count == 0:
|
|
|
|
|
if self.x_positions:
|
|
|
|
|
# max_diff = max(
|
|
|
|
|
# np.sqrt((np.array(self.x_positions) - self.init_x) ** 2 + (
|
|
|
|
|
# np.array(self.y_positions) - self.init_y) ** 2))
|
|
|
|
|
# print("After reset: max delta-x/y={}".format(max_diff))
|
|
|
|
|
self.x_positions = []
|
|
|
|
|
self.y_positions = []
|
|
|
|
|
self.init_x = self.agent_pos[0]
|
|
|
|
|
self.init_y = self.agent_pos[1]
|
|
|
|
|
|
|
|
|
|
# Are we carrying the key?
|
|
|
|
|
if self.carrying is not None:
|
|
|
|
|
print("Carrying KEY!!")
|
|
|
|
|
|
|
|
|
|
self.x_positions.append(self.agent_pos[0])
|
|
|
|
|
self.y_positions.append(self.agent_pos[1])
|
|
|
|
|
|
|
|
|
|
# One-hot the last dim into 11, 6, 3 one-hot vectors, then flatten.
|
|
|
|
|
objects = one_hot(obs[:, :, 0], depth=11)
|
|
|
|
|
colors = one_hot(obs[:, :, 1], depth=6)
|
|
|
|
|
states = one_hot(obs[:, :, 2], depth=3)
|
|
|
|
|
# Is the door we see open?
|
|
|
|
|
for x in range(7):
|
|
|
|
|
for y in range(7):
|
|
|
|
|
if objects[x, y, 4] == 1.0 and states[x, y, 0] == 1.0:
|
|
|
|
|
print("Door OPEN!!")
|
|
|
|
|
|
|
|
|
|
all_ = np.concatenate([objects, colors, states], -1)
|
|
|
|
|
ret = np.reshape(all_, (-1, ))
|
|
|
|
|
direction = one_hot(
|
|
|
|
|
np.array(self.agent_dir), depth=4).astype(np.float32)
|
|
|
|
|
return np.concatenate([ret, direction])
|
|
|
|
|
|
2020-08-13 14:14:16 -04:00
|
|
|
|
|
2020-08-19 17:49:50 +02:00
|
|
|
|
def env_maker(config):
|
|
|
|
|
name = config.get("name", "MiniGrid-Empty-5x5-v0")
|
|
|
|
|
env = gym.make(name)
|
|
|
|
|
# Only use image portion of observation (discard goal and direction).
|
|
|
|
|
env = gym_minigrid.wrappers.ImgObsWrapper(env)
|
|
|
|
|
env = OneHotWrapper(env)
|
|
|
|
|
return env
|
2020-08-13 14:14:16 -04:00
|
|
|
|
|
2020-08-19 17:49:50 +02:00
|
|
|
|
|
|
|
|
|
register_env("mini-grid", env_maker)
|
|
|
|
|
CONV_FILTERS = [[16, [11, 11], 3], [32, [9, 9], 3], [64, [5, 5], 3]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestCuriosity(unittest.TestCase):
|
2020-08-13 14:14:16 -04:00
|
|
|
|
@classmethod
|
|
|
|
|
def setUpClass(cls):
|
2020-08-19 17:49:50 +02:00
|
|
|
|
ray.init()
|
2020-08-13 14:14:16 -04:00
|
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
|
def tearDownClass(cls):
|
|
|
|
|
ray.shutdown()
|
|
|
|
|
|
2020-08-19 17:49:50 +02:00
|
|
|
|
def test_curiosity_on_large_frozen_lake(self):
|
|
|
|
|
config = ppo.DEFAULT_CONFIG.copy()
|
|
|
|
|
# A very large frozen-lake that's hard for a random policy to solve
|
|
|
|
|
# due to 0.0 feedback.
|
|
|
|
|
config["env"] = "FrozenLake-v0"
|
|
|
|
|
config["env_config"] = {
|
|
|
|
|
"desc": [
|
|
|
|
|
"SFFFFFFFFFFFFFFF",
|
|
|
|
|
"FFFFFFFFFFFFFFFF",
|
|
|
|
|
"FFFFFFFFFFFFFFFF",
|
|
|
|
|
"FFFFFFFFFFFFFFFF",
|
|
|
|
|
"FFFFFFFFFFFFFFFF",
|
|
|
|
|
"FFFFFFFFFFFFFFFF",
|
|
|
|
|
"FFFFFFFFFFFFFFFF",
|
|
|
|
|
"FFFFFFFFFFFFFFFF",
|
|
|
|
|
"FFFFFFFFFFFFFFFF",
|
|
|
|
|
"FFFFFFFFFFFFFFFF",
|
|
|
|
|
"FFFFFFFFFFFFFFFF",
|
|
|
|
|
"FFFFFFFFFFFFFFFF",
|
|
|
|
|
"FFFFFFFFFFFFFFFF",
|
|
|
|
|
"FFFFFFFFFFFFFFFF",
|
|
|
|
|
"FFFFFFFFFFFFFFFF",
|
|
|
|
|
"FFFFFFFFFFFFFFFG",
|
|
|
|
|
],
|
|
|
|
|
"is_slippery": False
|
2020-08-13 14:14:16 -04:00
|
|
|
|
}
|
2020-08-19 17:49:50 +02:00
|
|
|
|
# Limit horizon to make it really hard for non-curious agent to reach
|
|
|
|
|
# the goal state.
|
|
|
|
|
config["horizon"] = 40
|
|
|
|
|
config["num_workers"] = 0 # local only
|
|
|
|
|
config["train_batch_size"] = 512
|
|
|
|
|
config["num_sgd_iter"] = 10
|
|
|
|
|
|
|
|
|
|
num_iterations = 30
|
|
|
|
|
for _ in framework_iterator(config, frameworks="torch"):
|
|
|
|
|
# W/ Curiosity.
|
|
|
|
|
config["exploration_config"] = {
|
|
|
|
|
"type": "Curiosity",
|
|
|
|
|
"feature_dim": 128,
|
|
|
|
|
"eta": 0.05,
|
|
|
|
|
"sub_exploration": {
|
|
|
|
|
"type": "StochasticSampling",
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
trainer = ppo.PPOTrainer(config=config)
|
|
|
|
|
rewards_w = 0.0
|
|
|
|
|
for _ in range(num_iterations):
|
|
|
|
|
result = trainer.train()
|
|
|
|
|
rewards_w += result["episode_reward_mean"]
|
|
|
|
|
print(result)
|
|
|
|
|
rewards_w /= num_iterations
|
|
|
|
|
trainer.stop()
|
|
|
|
|
|
|
|
|
|
# W/o Curiosity.
|
|
|
|
|
config["exploration_config"] = {
|
|
|
|
|
"type": "StochasticSampling",
|
|
|
|
|
}
|
|
|
|
|
trainer = ppo.PPOTrainer(config=config)
|
|
|
|
|
rewards_wo = 0.0
|
|
|
|
|
for _ in range(num_iterations):
|
|
|
|
|
result = trainer.train()
|
|
|
|
|
rewards_wo += result["episode_reward_mean"]
|
|
|
|
|
print(result)
|
|
|
|
|
rewards_wo /= num_iterations
|
|
|
|
|
trainer.stop()
|
|
|
|
|
|
|
|
|
|
self.assertTrue(rewards_wo == 0.0)
|
|
|
|
|
self.assertGreater(rewards_w, 0.1)
|
2020-08-13 14:14:16 -04:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
import pytest
|
|
|
|
|
sys.exit(pytest.main(["-v", __file__]))
|