2022-02-09 19:34:43 +05:30
|
|
|
import logging
|
|
|
|
import platform
|
|
|
|
from typing import Any, Dict, List, Optional
|
2022-03-29 15:44:40 +03:00
|
|
|
|
2022-02-09 19:34:43 +05:30
|
|
|
import numpy as np
|
|
|
|
import random
|
2022-03-08 21:24:12 +05:30
|
|
|
from enum import Enum
|
2022-02-09 19:34:43 +05:30
|
|
|
|
|
|
|
# Import ray before psutil will make sure we use psutil's bundled version
|
|
|
|
import ray # noqa F401
|
|
|
|
import psutil # noqa E402
|
|
|
|
|
2022-03-29 15:44:40 +03:00
|
|
|
from ray.util.debug import log_once
|
2022-03-08 21:24:12 +05:30
|
|
|
from ray.rllib.policy.sample_batch import SampleBatch, MultiAgentBatch
|
2022-02-09 19:34:43 +05:30
|
|
|
from ray.rllib.utils.annotations import ExperimentalAPI
|
2022-03-29 15:44:40 +03:00
|
|
|
from ray.rllib.utils.deprecation import Deprecated
|
2022-02-09 19:34:43 +05:30
|
|
|
from ray.rllib.utils.metrics.window_stat import WindowStat
|
|
|
|
from ray.rllib.utils.typing import SampleBatchType
|
|
|
|
from ray.rllib.execution.buffers.replay_buffer import warn_replay_capacity
|
2022-04-18 12:20:12 +02:00
|
|
|
from ray.rllib.utils.deprecation import deprecation_warning
|
|
|
|
from ray.rllib.utils.deprecation import DEPRECATED_VALUE
|
|
|
|
from ray.rllib.execution.buffers.multi_agent_replay_buffer import (
|
|
|
|
MultiAgentReplayBuffer as Legacy_MultiAgentReplayBuffer,
|
|
|
|
)
|
|
|
|
from ray.rllib.utils.from_config import from_config
|
2022-02-09 19:34:43 +05:30
|
|
|
|
2022-03-08 21:24:12 +05:30
|
|
|
# Constant that represents all policies in lockstep replay mode.
|
|
|
|
_ALL_POLICIES = "__all__"
|
|
|
|
|
2022-02-09 19:34:43 +05:30
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
2022-03-08 21:24:12 +05:30
|
|
|
@ExperimentalAPI
|
|
|
|
class StorageUnit(Enum):
|
|
|
|
TIMESTEPS = "timesteps"
|
|
|
|
SEQUENCES = "sequences"
|
|
|
|
EPISODES = "episodes"
|
|
|
|
|
|
|
|
|
2022-04-18 12:20:12 +02:00
|
|
|
@ExperimentalAPI
|
|
|
|
def validate_buffer_config(config: dict):
|
|
|
|
if config.get("replay_buffer_config", None) is None:
|
|
|
|
config["replay_buffer_config"] = {}
|
|
|
|
|
|
|
|
prioritized_replay = config.get("prioritized_replay")
|
|
|
|
if prioritized_replay != DEPRECATED_VALUE:
|
|
|
|
deprecation_warning(
|
|
|
|
old="config['prioritized_replay']",
|
|
|
|
help="Replay prioritization specified at new location config["
|
|
|
|
"'replay_buffer_config']["
|
|
|
|
"'prioritized_replay'] will be overwritten.",
|
|
|
|
error=False,
|
|
|
|
)
|
|
|
|
config["replay_buffer_config"]["prioritized_replay"] = prioritized_replay
|
|
|
|
|
|
|
|
capacity = config.get("buffer_size", DEPRECATED_VALUE)
|
|
|
|
if capacity != DEPRECATED_VALUE:
|
|
|
|
deprecation_warning(
|
|
|
|
old="config['buffer_size']",
|
|
|
|
help="Buffer size specified at new location config["
|
|
|
|
"'replay_buffer_config']["
|
|
|
|
"'capacity'] will be overwritten.",
|
|
|
|
error=False,
|
|
|
|
)
|
|
|
|
config["replay_buffer_config"]["capacity"] = capacity
|
|
|
|
|
|
|
|
# Deprecation of old-style replay buffer args
|
|
|
|
# Warnings before checking of we need local buffer so that algorithms
|
|
|
|
# Without local buffer also get warned
|
|
|
|
deprecated_replay_buffer_keys = [
|
|
|
|
"prioritized_replay_alpha",
|
|
|
|
"prioritized_replay_beta",
|
|
|
|
"prioritized_replay_eps",
|
|
|
|
"learning_starts",
|
|
|
|
]
|
|
|
|
for k in deprecated_replay_buffer_keys:
|
|
|
|
if config.get(k, DEPRECATED_VALUE) != DEPRECATED_VALUE:
|
|
|
|
deprecation_warning(
|
|
|
|
old="config[{}]".format(k),
|
|
|
|
help="config['replay_buffer_config'][{}] should be used "
|
|
|
|
"for Q-Learning algorithms. Ignore this warning if "
|
|
|
|
"you are not using a Q-Learning algorithm and still "
|
|
|
|
"provide {}."
|
|
|
|
"".format(k, k),
|
|
|
|
error=False,
|
|
|
|
)
|
|
|
|
# Copy values over to new location in config to support new
|
|
|
|
# and old configuration style
|
|
|
|
if config.get("replay_buffer_config") is not None:
|
|
|
|
config["replay_buffer_config"][k] = config[k]
|
|
|
|
|
|
|
|
# Old Ape-X configs may contain no_local_replay_buffer
|
|
|
|
no_local_replay_buffer = config.get("no_local_replay_buffer", False)
|
|
|
|
if no_local_replay_buffer:
|
|
|
|
deprecation_warning(
|
|
|
|
old="config['no_local_replay_buffer']",
|
|
|
|
help="no_local_replay_buffer specified at new location config["
|
|
|
|
"'replay_buffer_config']["
|
|
|
|
"'capacity'] will be overwritten.",
|
|
|
|
error=False,
|
|
|
|
)
|
|
|
|
config["replay_buffer_config"][
|
|
|
|
"no_local_replay_buffer"
|
|
|
|
] = no_local_replay_buffer
|
|
|
|
|
|
|
|
# TODO (Artur):
|
|
|
|
if config["replay_buffer_config"].get("no_local_replay_buffer", False):
|
|
|
|
return
|
|
|
|
|
|
|
|
replay_buffer_config = config["replay_buffer_config"]
|
|
|
|
assert (
|
|
|
|
"type" in replay_buffer_config
|
|
|
|
), "Can not instantiate ReplayBuffer from config without 'type' key."
|
|
|
|
|
|
|
|
# Check if old replay buffer should be instantiated
|
|
|
|
buffer_type = config["replay_buffer_config"]["type"]
|
|
|
|
if not config["replay_buffer_config"].get("_enable_replay_buffer_api", False):
|
|
|
|
if isinstance(buffer_type, str) and buffer_type.find(".") == -1:
|
|
|
|
# Prepend old-style buffers' path
|
|
|
|
assert buffer_type == "MultiAgentReplayBuffer", (
|
|
|
|
"Without "
|
|
|
|
"ReplayBuffer "
|
|
|
|
"API, only "
|
|
|
|
"MultiAgentReplayBuffer "
|
|
|
|
"is supported!"
|
|
|
|
)
|
|
|
|
# Create valid full [module].[class] string for from_config
|
|
|
|
buffer_type = "ray.rllib.execution.MultiAgentReplayBuffer"
|
|
|
|
else:
|
|
|
|
assert buffer_type in [
|
|
|
|
"ray.rllib.execution.MultiAgentReplayBuffer",
|
|
|
|
Legacy_MultiAgentReplayBuffer,
|
|
|
|
], (
|
|
|
|
"Without ReplayBuffer API, only " "MultiAgentReplayBuffer is supported!"
|
|
|
|
)
|
|
|
|
|
|
|
|
config["replay_buffer_config"]["type"] = buffer_type
|
|
|
|
|
|
|
|
# Remove from config, so it's not passed into the buffer c'tor
|
|
|
|
config["replay_buffer_config"].pop("_enable_replay_buffer_api", None)
|
|
|
|
|
|
|
|
# We need to deprecate the old-style location of the following
|
|
|
|
# buffer arguments and make users put them into the
|
|
|
|
# "replay_buffer_config" field of their config.
|
|
|
|
replay_batch_size = config.get("replay_batch_size", DEPRECATED_VALUE)
|
|
|
|
if replay_batch_size != DEPRECATED_VALUE:
|
|
|
|
config["replay_buffer_config"]["replay_batch_size"] = replay_batch_size
|
|
|
|
deprecation_warning(
|
|
|
|
old="config['replay_batch_size']",
|
|
|
|
help="Replay batch size specified at new "
|
|
|
|
"location config['replay_buffer_config']["
|
|
|
|
"'replay_batch_size'] will be overwritten.",
|
|
|
|
error=False,
|
|
|
|
)
|
|
|
|
|
|
|
|
replay_mode = config.get("replay_mode", DEPRECATED_VALUE)
|
|
|
|
if replay_mode != DEPRECATED_VALUE:
|
|
|
|
config["replay_buffer_config"]["replay_mode"] = replay_mode
|
|
|
|
deprecation_warning(
|
|
|
|
old="config['multiagent']['replay_mode']",
|
|
|
|
help="Replay sequence length specified at new "
|
|
|
|
"location config['replay_buffer_config']["
|
|
|
|
"'replay_mode'] will be overwritten.",
|
|
|
|
error=False,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Can't use DEPRECATED_VALUE here because this is also a deliberate
|
|
|
|
# value set for some algorithms
|
|
|
|
# TODO: (Artur): Compare to DEPRECATED_VALUE on deprecation
|
|
|
|
replay_sequence_length = config.get("replay_sequence_length", None)
|
|
|
|
if replay_sequence_length is not None:
|
|
|
|
config["replay_buffer_config"][
|
|
|
|
"replay_sequence_length"
|
|
|
|
] = replay_sequence_length
|
|
|
|
deprecation_warning(
|
|
|
|
old="config['replay_sequence_length']",
|
|
|
|
help="Replay sequence length specified at new "
|
|
|
|
"location config['replay_buffer_config']["
|
|
|
|
"'replay_sequence_length'] will be overwritten.",
|
|
|
|
error=False,
|
|
|
|
)
|
|
|
|
|
|
|
|
replay_burn_in = config.get("burn_in", DEPRECATED_VALUE)
|
|
|
|
if replay_burn_in != DEPRECATED_VALUE:
|
|
|
|
config["replay_buffer_config"]["replay_burn_in"] = replay_burn_in
|
|
|
|
deprecation_warning(
|
|
|
|
old="config['burn_in']",
|
|
|
|
help="Burn in specified at new location config["
|
|
|
|
"'replay_buffer_config']["
|
|
|
|
"'replay_burn_in'] will be overwritten.",
|
|
|
|
)
|
|
|
|
|
|
|
|
replay_zero_init_states = config.get(
|
|
|
|
"replay_zero_init_states", DEPRECATED_VALUE
|
|
|
|
)
|
|
|
|
if replay_zero_init_states != DEPRECATED_VALUE:
|
|
|
|
config["replay_buffer_config"][
|
|
|
|
"replay_zero_init_states"
|
|
|
|
] = replay_zero_init_states
|
|
|
|
deprecation_warning(
|
|
|
|
old="config['replay_zero_init_states']",
|
|
|
|
help="Replay zero init states specified at new location "
|
|
|
|
"config["
|
|
|
|
"'replay_buffer_config']["
|
|
|
|
"'replay_zero_init_states'] will be overwritten.",
|
|
|
|
error=False,
|
|
|
|
)
|
|
|
|
|
|
|
|
# TODO (Artur): Move this logic into config objects
|
|
|
|
if config["replay_buffer_config"].get("prioritized_replay", False):
|
|
|
|
is_prioritized_buffer = True
|
|
|
|
else:
|
|
|
|
is_prioritized_buffer = False
|
|
|
|
# This triggers non-prioritization in old-style replay buffer
|
|
|
|
config["replay_buffer_config"]["prioritized_replay_alpha"] = 0.0
|
|
|
|
else:
|
|
|
|
if isinstance(buffer_type, str) and buffer_type.find(".") == -1:
|
|
|
|
# Create valid full [module].[class] string for from_config
|
|
|
|
config["replay_buffer_config"]["type"] = (
|
|
|
|
"ray.rllib.utils.replay_buffers." + buffer_type
|
|
|
|
)
|
|
|
|
test_buffer = from_config(buffer_type, config["replay_buffer_config"])
|
|
|
|
if hasattr(test_buffer, "update_priorities"):
|
|
|
|
is_prioritized_buffer = True
|
|
|
|
else:
|
|
|
|
is_prioritized_buffer = False
|
|
|
|
|
|
|
|
if is_prioritized_buffer:
|
|
|
|
if config["multiagent"]["replay_mode"] == "lockstep":
|
|
|
|
raise ValueError(
|
|
|
|
"Prioritized replay is not supported when replay_mode=lockstep."
|
|
|
|
)
|
|
|
|
elif config["replay_buffer_config"].get("replay_sequence_length", 0) > 1:
|
|
|
|
raise ValueError(
|
|
|
|
"Prioritized replay is not supported when "
|
|
|
|
"replay_sequence_length > 1."
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
if config.get("worker_side_prioritization"):
|
|
|
|
raise ValueError(
|
|
|
|
"Worker side prioritization is not supported when "
|
|
|
|
"prioritized_replay=False."
|
|
|
|
)
|
|
|
|
|
|
|
|
if config["replay_buffer_config"].get("replay_batch_size", None) is None:
|
|
|
|
# Fall back to train batch size if no replay batch size was provided
|
|
|
|
config["replay_buffer_config"]["replay_batch_size"] = config["train_batch_size"]
|
|
|
|
|
|
|
|
# Pop prioritized replay because it's not a valid parameter for older
|
|
|
|
# replay buffers
|
|
|
|
config["replay_buffer_config"].pop("prioritized_replay", None)
|
|
|
|
|
|
|
|
|
2022-02-09 19:34:43 +05:30
|
|
|
@ExperimentalAPI
|
|
|
|
class ReplayBuffer:
|
|
|
|
def __init__(
|
|
|
|
self, capacity: int = 10000, storage_unit: str = "timesteps", **kwargs
|
|
|
|
):
|
2022-03-08 21:24:12 +05:30
|
|
|
"""Initializes a (FIFO) ReplayBuffer instance.
|
2022-02-09 19:34:43 +05:30
|
|
|
|
|
|
|
Args:
|
2022-03-08 21:24:12 +05:30
|
|
|
capacity: Max number of timesteps to store in this FIFO
|
2022-02-09 19:34:43 +05:30
|
|
|
buffer. After reaching this number, older samples will be
|
|
|
|
dropped to make space for new ones.
|
2022-03-08 21:24:12 +05:30
|
|
|
storage_unit: Either 'timesteps', `sequences` or
|
|
|
|
`episodes`. Specifies how experiences are stored.
|
2022-02-09 19:34:43 +05:30
|
|
|
**kwargs: Forward compatibility kwargs.
|
|
|
|
"""
|
|
|
|
|
2022-03-08 21:24:12 +05:30
|
|
|
if storage_unit in ["timesteps", StorageUnit.TIMESTEPS]:
|
|
|
|
self._storage_unit = StorageUnit.TIMESTEPS
|
|
|
|
elif storage_unit in ["sequences", StorageUnit.SEQUENCES]:
|
|
|
|
self._storage_unit = StorageUnit.SEQUENCES
|
|
|
|
elif storage_unit in ["episodes", StorageUnit.EPISODES]:
|
|
|
|
self._storage_unit = StorageUnit.EPISODES
|
2022-02-09 19:34:43 +05:30
|
|
|
else:
|
2022-03-08 21:24:12 +05:30
|
|
|
raise ValueError(
|
2022-03-15 09:34:21 -07:00
|
|
|
"storage_unit must be either 'timesteps', `sequences` or `episodes`."
|
2022-03-08 21:24:12 +05:30
|
|
|
)
|
2022-02-09 19:34:43 +05:30
|
|
|
|
2022-03-08 21:24:12 +05:30
|
|
|
# The actual storage (list of SampleBatches or MultiAgentBatches).
|
2022-02-09 19:34:43 +05:30
|
|
|
self._storage = []
|
|
|
|
|
2022-03-08 21:24:12 +05:30
|
|
|
# Caps the number of timesteps stored in this buffer
|
2022-03-29 13:06:27 +03:00
|
|
|
if capacity <= 0:
|
|
|
|
raise ValueError(
|
|
|
|
"Capacity of replay buffer has to be greater than zero "
|
|
|
|
"but was set to {}.".format(capacity)
|
|
|
|
)
|
2022-02-09 19:34:43 +05:30
|
|
|
self.capacity = capacity
|
|
|
|
# The next index to override in the buffer.
|
|
|
|
self._next_idx = 0
|
2022-03-08 21:24:12 +05:30
|
|
|
# len(self._hit_count) must always be less than len(capacity)
|
2022-02-09 19:34:43 +05:30
|
|
|
self._hit_count = np.zeros(self.capacity)
|
|
|
|
|
|
|
|
# Whether we have already hit our capacity (and have therefore
|
|
|
|
# started to evict older samples).
|
|
|
|
self._eviction_started = False
|
|
|
|
|
|
|
|
# Number of (single) timesteps that have been added to the buffer
|
|
|
|
# over its lifetime. Note that each added item (batch) may contain
|
|
|
|
# more than one timestep.
|
|
|
|
self._num_timesteps_added = 0
|
|
|
|
self._num_timesteps_added_wrap = 0
|
|
|
|
|
|
|
|
# Number of (single) timesteps that have been sampled from the buffer
|
|
|
|
# over its lifetime.
|
|
|
|
self._num_timesteps_sampled = 0
|
|
|
|
|
|
|
|
self._evicted_hit_stats = WindowStat("evicted_hit", 1000)
|
|
|
|
self._est_size_bytes = 0
|
|
|
|
|
2022-03-08 21:24:12 +05:30
|
|
|
self.batch_size = None
|
|
|
|
|
2022-02-09 19:34:43 +05:30
|
|
|
def __len__(self) -> int:
|
|
|
|
"""Returns the number of items currently stored in this buffer."""
|
|
|
|
return len(self._storage)
|
|
|
|
|
2022-03-29 15:44:40 +03:00
|
|
|
@ExperimentalAPI
|
|
|
|
@Deprecated(old="add_batch", new="add", error=False)
|
|
|
|
def add_batch(self, batch: SampleBatchType, **kwargs) -> None:
|
|
|
|
"""Deprecated in favor of new ReplayBuffer API."""
|
|
|
|
return self.add(batch, **kwargs)
|
|
|
|
|
|
|
|
@ExperimentalAPI
|
|
|
|
@Deprecated(old="replay", new="sample", error=False)
|
|
|
|
def replay(self, num_items: int = 1, **kwargs) -> Optional[SampleBatchType]:
|
|
|
|
"""Deprecated in favor of new ReplayBuffer API."""
|
|
|
|
return self.sample(num_items, **kwargs)
|
|
|
|
|
2022-02-09 19:34:43 +05:30
|
|
|
@ExperimentalAPI
|
|
|
|
def add(self, batch: SampleBatchType, **kwargs) -> None:
|
2022-03-08 21:24:12 +05:30
|
|
|
"""Adds a batch of experiences to this buffer.
|
|
|
|
|
|
|
|
Also splits experiences into chunks of timesteps, sequences
|
|
|
|
or episodes, depending on self._storage_unit. Calls
|
|
|
|
self._add_single_batch.
|
2022-02-09 19:34:43 +05:30
|
|
|
|
|
|
|
Args:
|
2022-03-08 21:24:12 +05:30
|
|
|
batch: Batch to add to this buffer's storage.
|
2022-02-09 19:34:43 +05:30
|
|
|
**kwargs: Forward compatibility kwargs.
|
|
|
|
"""
|
|
|
|
assert batch.count > 0, batch
|
|
|
|
warn_replay_capacity(item=batch, num_items=self.capacity / batch.count)
|
|
|
|
|
2022-03-08 21:24:12 +05:30
|
|
|
if (
|
|
|
|
type(batch) == MultiAgentBatch
|
|
|
|
and self._storage_unit != StorageUnit.TIMESTEPS
|
|
|
|
):
|
|
|
|
raise ValueError(
|
|
|
|
"Can not add MultiAgentBatch to ReplayBuffer "
|
|
|
|
"with storage_unit {}"
|
|
|
|
"".format(str(self._storage_unit))
|
|
|
|
)
|
|
|
|
|
|
|
|
if self._storage_unit == StorageUnit.TIMESTEPS:
|
|
|
|
self._add_single_batch(batch, **kwargs)
|
|
|
|
|
|
|
|
elif self._storage_unit == StorageUnit.SEQUENCES:
|
|
|
|
timestep_count = 0
|
|
|
|
for seq_len in batch.get(SampleBatch.SEQ_LENS):
|
|
|
|
start_seq = timestep_count
|
|
|
|
end_seq = timestep_count + seq_len
|
|
|
|
self._add_single_batch(batch[start_seq:end_seq], **kwargs)
|
|
|
|
timestep_count = end_seq
|
|
|
|
|
|
|
|
elif self._storage_unit == StorageUnit.EPISODES:
|
|
|
|
for eps in batch.split_by_episode():
|
|
|
|
if (
|
|
|
|
eps.get(SampleBatch.T)[0] == 0
|
|
|
|
and eps.get(SampleBatch.DONES)[-1] == True # noqa E712
|
|
|
|
):
|
|
|
|
# Only add full episodes to the buffer
|
|
|
|
self._add_single_batch(eps, **kwargs)
|
|
|
|
else:
|
|
|
|
if log_once("only_full_episodes"):
|
|
|
|
logger.info(
|
|
|
|
"This buffer uses episodes as a storage "
|
|
|
|
"unit and thus allows only full episodes "
|
|
|
|
"to be added to it. Some samples may be "
|
|
|
|
"dropped."
|
|
|
|
)
|
|
|
|
|
|
|
|
@ExperimentalAPI
|
|
|
|
def _add_single_batch(self, item: SampleBatchType, **kwargs) -> None:
|
|
|
|
"""Add a SampleBatch of experiences to self._storage.
|
|
|
|
|
|
|
|
An item consists of either one or more timesteps, a sequence or an
|
|
|
|
episode. Differs from add() in that it does not consider the storage
|
|
|
|
unit or type of batch and simply stores it.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
item: The batch to be added.
|
|
|
|
**kwargs: Forward compatibility kwargs.
|
|
|
|
"""
|
|
|
|
self._num_timesteps_added += item.count
|
|
|
|
self._num_timesteps_added_wrap += item.count
|
2022-02-09 19:34:43 +05:30
|
|
|
|
|
|
|
if self._next_idx >= len(self._storage):
|
2022-03-08 21:24:12 +05:30
|
|
|
self._storage.append(item)
|
|
|
|
self._est_size_bytes += item.size_bytes()
|
2022-02-09 19:34:43 +05:30
|
|
|
else:
|
2022-03-08 21:24:12 +05:30
|
|
|
self._storage[self._next_idx] = item
|
|
|
|
|
|
|
|
# Eviction of older samples has already started (buffer is "full").
|
|
|
|
if self._eviction_started:
|
|
|
|
self._evicted_hit_stats.push(self._hit_count[self._next_idx])
|
|
|
|
self._hit_count[self._next_idx] = 0
|
2022-02-09 19:34:43 +05:30
|
|
|
|
|
|
|
# Wrap around storage as a circular buffer once we hit capacity.
|
|
|
|
if self._num_timesteps_added_wrap >= self.capacity:
|
|
|
|
self._eviction_started = True
|
|
|
|
self._num_timesteps_added_wrap = 0
|
|
|
|
self._next_idx = 0
|
|
|
|
else:
|
|
|
|
self._next_idx += 1
|
|
|
|
|
|
|
|
@ExperimentalAPI
|
|
|
|
def sample(self, num_items: int, **kwargs) -> Optional[SampleBatchType]:
|
2022-03-08 21:24:12 +05:30
|
|
|
"""Samples `num_items` items from this buffer.
|
|
|
|
|
|
|
|
Samples in the results may be repeated.
|
|
|
|
|
|
|
|
Examples for storage of SamplesBatches:
|
|
|
|
- If storage unit `timesteps` has been chosen and batches of
|
|
|
|
size 5 have been added, sample(5) will yield a concatenated batch of
|
|
|
|
15 timesteps.
|
|
|
|
- If storage unit 'sequences' has been chosen and sequences of
|
|
|
|
different lengths have been added, sample(5) will yield a concatenated
|
|
|
|
batch with a number of timesteps equal to the sum of timesteps in
|
|
|
|
the 5 sampled sequences.
|
|
|
|
- If storage unit 'episodes' has been chosen and episodes of
|
|
|
|
different lengths have been added, sample(5) will yield a concatenated
|
|
|
|
batch with a number of timesteps equal to the sum of timesteps in
|
|
|
|
the 5 sampled episodes.
|
2022-02-09 19:34:43 +05:30
|
|
|
|
|
|
|
Args:
|
|
|
|
num_items: Number of items to sample from this buffer.
|
|
|
|
**kwargs: Forward compatibility kwargs.
|
|
|
|
|
|
|
|
Returns:
|
2022-03-08 21:24:12 +05:30
|
|
|
Concatenated batch of items.
|
2022-02-09 19:34:43 +05:30
|
|
|
"""
|
|
|
|
idxes = [random.randint(0, len(self) - 1) for _ in range(num_items)]
|
|
|
|
sample = self._encode_sample(idxes)
|
2022-03-08 21:24:12 +05:30
|
|
|
self._num_timesteps_sampled += sample.count
|
2022-02-09 19:34:43 +05:30
|
|
|
return sample
|
|
|
|
|
|
|
|
@ExperimentalAPI
|
|
|
|
def stats(self, debug: bool = False) -> dict:
|
|
|
|
"""Returns the stats of this buffer.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
debug: If True, adds sample eviction statistics to the returned
|
|
|
|
stats dict.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
A dictionary of stats about this buffer.
|
|
|
|
"""
|
|
|
|
data = {
|
|
|
|
"added_count": self._num_timesteps_added,
|
|
|
|
"added_count_wrapped": self._num_timesteps_added_wrap,
|
|
|
|
"eviction_started": self._eviction_started,
|
|
|
|
"sampled_count": self._num_timesteps_sampled,
|
|
|
|
"est_size_bytes": self._est_size_bytes,
|
|
|
|
"num_entries": len(self._storage),
|
|
|
|
}
|
|
|
|
if debug:
|
|
|
|
data.update(self._evicted_hit_stats.stats())
|
|
|
|
return data
|
|
|
|
|
|
|
|
@ExperimentalAPI
|
|
|
|
def get_state(self) -> Dict[str, Any]:
|
|
|
|
"""Returns all local state.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
The serializable local state.
|
|
|
|
"""
|
|
|
|
state = {"_storage": self._storage, "_next_idx": self._next_idx}
|
|
|
|
state.update(self.stats(debug=False))
|
|
|
|
return state
|
|
|
|
|
|
|
|
@ExperimentalAPI
|
|
|
|
def set_state(self, state: Dict[str, Any]) -> None:
|
|
|
|
"""Restores all local state to the provided `state`.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
state: The new state to set this buffer. Can be
|
|
|
|
obtained by calling `self.get_state()`.
|
|
|
|
"""
|
|
|
|
# The actual storage.
|
|
|
|
self._storage = state["_storage"]
|
|
|
|
self._next_idx = state["_next_idx"]
|
|
|
|
# Stats and counts.
|
|
|
|
self._num_timesteps_added = state["added_count"]
|
|
|
|
self._num_timesteps_added_wrap = state["added_count_wrapped"]
|
|
|
|
self._eviction_started = state["eviction_started"]
|
|
|
|
self._num_timesteps_sampled = state["sampled_count"]
|
|
|
|
self._est_size_bytes = state["est_size_bytes"]
|
|
|
|
|
|
|
|
def _encode_sample(self, idxes: List[int]) -> SampleBatchType:
|
2022-03-08 21:24:12 +05:30
|
|
|
"""Fetches concatenated samples at given indeces from the storage."""
|
2022-04-07 10:56:25 +02:00
|
|
|
samples = []
|
|
|
|
for i in idxes:
|
|
|
|
self._hit_count[i] += 1
|
|
|
|
samples.append(self._storage[i])
|
2022-03-08 21:24:12 +05:30
|
|
|
|
|
|
|
if samples:
|
2022-04-07 10:56:25 +02:00
|
|
|
# We assume all samples are of same type
|
2022-03-08 21:24:12 +05:30
|
|
|
sample_type = type(samples[0])
|
|
|
|
out = sample_type.concat_samples(samples)
|
|
|
|
else:
|
|
|
|
out = SampleBatch()
|
2022-02-09 19:34:43 +05:30
|
|
|
out.decompress_if_needed()
|
|
|
|
return out
|
|
|
|
|
|
|
|
def get_host(self) -> str:
|
|
|
|
"""Returns the computer's network name.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
The computer's networks name or an empty string, if the network
|
|
|
|
name could not be determined.
|
|
|
|
"""
|
|
|
|
return platform.node()
|