ray/rllib/models/torch/visionnet.py

194 lines
7.1 KiB
Python
Raw Normal View History

import numpy as np
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
from ray.rllib.models.torch.misc import normc_initializer, same_padding, \
SlimConv2d, SlimFC
from ray.rllib.models.utils import get_filter_config
from ray.rllib.utils.annotations import override
from ray.rllib.utils.framework import try_import_torch
_, nn = try_import_torch()
class VisionNetwork(TorchModelV2, nn.Module):
"""Generic vision network."""
def __init__(self, obs_space, action_space, num_outputs, model_config,
name):
if not model_config.get("conv_filters"):
model_config["conv_filters"] = get_filter_config(obs_space.shape)
TorchModelV2.__init__(self, obs_space, action_space, num_outputs,
model_config, name)
nn.Module.__init__(self)
activation = self.model_config.get("conv_activation")
filters = self.model_config["conv_filters"]
no_final_linear = self.model_config.get("no_final_linear")
vf_share_layers = self.model_config.get("vf_share_layers")
# Whether the last layer is the output of a Flattened (rather than
# a n x (1,1) Conv2D).
self.last_layer_is_flattened = False
self._logits = None
[RLlib] SAC Torch (incl. Atari learning) (#7984) * Policy-classes cleanup and torch/tf unification. - Make Policy abstract. - Add `action_dist` to call to `extra_action_out_fn` (necessary for PPO torch). - Move some methods and vars to base Policy (from TFPolicy): num_state_tensors, ACTION_PROB, ACTION_LOGP and some more. * Fix `clip_action` import from Policy (should probably be moved into utils altogether). * - Move `is_recurrent()` and `num_state_tensors()` into TFPolicy (from DynamicTFPolicy). - Add config to all Policy c'tor calls (as 3rd arg after obs and action spaces). * Add `config` to c'tor call to TFPolicy. * Add missing `config` to c'tor call to TFPolicy in marvil_policy.py. * Fix test_rollout_worker.py::MockPolicy and BadPolicy classes (Policy base class is now abstract). * Fix LINT errors in Policy classes. * Implement StatefulPolicy abstract methods in test cases: test_multi_agent_env.py. * policy.py LINT errors. * Create a simple TestPolicy to sub-class from when testing Policies (reduces code in some test cases). * policy.py - Remove abstractmethod from `apply_gradients` and `compute_gradients` (these are not required iff `learn_on_batch` implemented). - Fix docstring of `num_state_tensors`. * Make QMIX torch Policy a child of TorchPolicy (instead of Policy). * QMixPolicy add empty implementations of abstract Policy methods. * Store Policy's config in self.config in base Policy c'tor. * - Make only compute_actions in base Policy's an abstractmethod and provide pass implementation to all other methods if not defined. - Fix state_batches=None (most Policies don't have internal states). * Cartpole tf learning. * Cartpole tf AND torch learning (in ~ same ts). * Cartpole tf AND torch learning (in ~ same ts). 2 * Cartpole tf (torch syntax-broken) learning (in ~ same ts). 3 * Cartpole tf AND torch learning (in ~ same ts). 4 * Cartpole tf AND torch learning (in ~ same ts). 5 * Cartpole tf AND torch learning (in ~ same ts). 6 * Cartpole tf AND torch learning (in ~ same ts). Pendulum tf learning. * WIP. * WIP. * SAC torch learning Pendulum. * WIP. * SAC torch and tf learning Pendulum and Cartpole after cleanup. * WIP. * LINT. * LINT. * SAC: Move policy.target_model to policy.device as well. * Fixes and cleanup. * Fix data-format of tf keras Conv2d layers (broken for some tf-versions which have data_format="channels_first" as default). * Fixes and LINT. * Fixes and LINT. * Fix and LINT. * WIP. * Test fixes and LINT. * Fixes and LINT. Co-authored-by: Sven Mika <sven@Svens-MacBook-Pro.local>
2020-04-15 13:25:16 +02:00
layers = []
(w, h, in_channels) = obs_space.shape
in_size = [w, h]
for out_channels, kernel, stride in filters[:-1]:
padding, out_size = same_padding(in_size, kernel, [stride, stride])
layers.append(
[RLlib] SAC Torch (incl. Atari learning) (#7984) * Policy-classes cleanup and torch/tf unification. - Make Policy abstract. - Add `action_dist` to call to `extra_action_out_fn` (necessary for PPO torch). - Move some methods and vars to base Policy (from TFPolicy): num_state_tensors, ACTION_PROB, ACTION_LOGP and some more. * Fix `clip_action` import from Policy (should probably be moved into utils altogether). * - Move `is_recurrent()` and `num_state_tensors()` into TFPolicy (from DynamicTFPolicy). - Add config to all Policy c'tor calls (as 3rd arg after obs and action spaces). * Add `config` to c'tor call to TFPolicy. * Add missing `config` to c'tor call to TFPolicy in marvil_policy.py. * Fix test_rollout_worker.py::MockPolicy and BadPolicy classes (Policy base class is now abstract). * Fix LINT errors in Policy classes. * Implement StatefulPolicy abstract methods in test cases: test_multi_agent_env.py. * policy.py LINT errors. * Create a simple TestPolicy to sub-class from when testing Policies (reduces code in some test cases). * policy.py - Remove abstractmethod from `apply_gradients` and `compute_gradients` (these are not required iff `learn_on_batch` implemented). - Fix docstring of `num_state_tensors`. * Make QMIX torch Policy a child of TorchPolicy (instead of Policy). * QMixPolicy add empty implementations of abstract Policy methods. * Store Policy's config in self.config in base Policy c'tor. * - Make only compute_actions in base Policy's an abstractmethod and provide pass implementation to all other methods if not defined. - Fix state_batches=None (most Policies don't have internal states). * Cartpole tf learning. * Cartpole tf AND torch learning (in ~ same ts). * Cartpole tf AND torch learning (in ~ same ts). 2 * Cartpole tf (torch syntax-broken) learning (in ~ same ts). 3 * Cartpole tf AND torch learning (in ~ same ts). 4 * Cartpole tf AND torch learning (in ~ same ts). 5 * Cartpole tf AND torch learning (in ~ same ts). 6 * Cartpole tf AND torch learning (in ~ same ts). Pendulum tf learning. * WIP. * WIP. * SAC torch learning Pendulum. * WIP. * SAC torch and tf learning Pendulum and Cartpole after cleanup. * WIP. * LINT. * LINT. * SAC: Move policy.target_model to policy.device as well. * Fixes and cleanup. * Fix data-format of tf keras Conv2d layers (broken for some tf-versions which have data_format="channels_first" as default). * Fixes and LINT. * Fixes and LINT. * Fix and LINT. * WIP. * Test fixes and LINT. * Fixes and LINT. Co-authored-by: Sven Mika <sven@Svens-MacBook-Pro.local>
2020-04-15 13:25:16 +02:00
SlimConv2d(
in_channels,
out_channels,
kernel,
stride,
padding,
activation_fn=activation))
in_channels = out_channels
in_size = out_size
out_channels, kernel, stride = filters[-1]
# No final linear: Last layer is a Conv2D and uses num_outputs.
if no_final_linear and num_outputs:
layers.append(
SlimConv2d(
in_channels,
num_outputs,
kernel,
stride,
None, # padding=valid
activation_fn=activation))
out_channels = num_outputs
# Finish network normally (w/o overriding last layer size with
# `num_outputs`), then add another linear one of size `num_outputs`.
else:
layers.append(
SlimConv2d(
in_channels,
out_channels,
kernel,
stride,
None, # padding=valid
activation_fn=activation))
# num_outputs defined. Use that to create an exact
# `num_output`-sized (1,1)-Conv2D.
if num_outputs:
in_size = [
np.ceil((in_size[0] - kernel[0]) / stride),
np.ceil((in_size[1] - kernel[1]) / stride)
]
padding, _ = same_padding(in_size, [1, 1], [1, 1])
self._logits = SlimConv2d(
out_channels,
num_outputs, [1, 1],
1,
padding,
activation_fn=None)
# num_outputs not known -> Flatten, then set self.num_outputs
# to the resulting number of nodes.
else:
self.last_layer_is_flattened = True
layers.append(nn.Flatten())
self.num_outputs = out_channels
self._convs = nn.Sequential(*layers)
# Build the value layers
self._value_branch_separate = self._value_branch = None
if vf_share_layers:
self._value_branch = SlimFC(
out_channels,
1,
initializer=normc_initializer(0.01),
activation_fn=None)
else:
vf_layers = []
(w, h, in_channels) = obs_space.shape
in_size = [w, h]
for out_channels, kernel, stride in filters[:-1]:
padding, out_size = same_padding(in_size, kernel,
[stride, stride])
vf_layers.append(
SlimConv2d(
in_channels,
out_channels,
kernel,
stride,
padding,
activation_fn=activation))
in_channels = out_channels
in_size = out_size
out_channels, kernel, stride = filters[-1]
vf_layers.append(
SlimConv2d(
in_channels,
out_channels,
kernel,
stride,
None,
activation_fn=activation))
vf_layers.append(
SlimConv2d(
in_channels=out_channels,
out_channels=1,
kernel=1,
stride=1,
padding=None,
activation_fn=None))
self._value_branch_separate = nn.Sequential(*vf_layers)
# Holds the current "base" output (before logits layer).
self._features = None
@override(TorchModelV2)
def forward(self, input_dict, state, seq_lens):
self._features = input_dict["obs"].float().permute(0, 3, 1, 2)
conv_out = self._convs(self._features)
# Store features to save forward pass when getting value_function out.
if not self._value_branch_separate:
self._features = conv_out
if not self.last_layer_is_flattened:
if self._logits:
conv_out = self._logits(conv_out)
if conv_out.shape[2] != 1 or conv_out.shape[3] != 1:
raise ValueError(
"Given `conv_filters` ({}) do not result in a [B, {} "
"(`num_outputs`), 1, 1] shape (but in {})! Please adjust "
"your Conv2D stack such that the last 2 dims are both "
"1.".format(self.model_config["conv_filters"],
self.num_outputs, list(conv_out.shape)))
logits = conv_out.squeeze(3)
logits = logits.squeeze(2)
return logits, state
else:
return conv_out, state
@override(TorchModelV2)
def value_function(self):
assert self._features is not None, "must call forward() first"
if self._value_branch_separate:
value = self._value_branch_separate(self._features)
value = value.squeeze(3)
value = value.squeeze(2)
return value.squeeze(1)
else:
if not self.last_layer_is_flattened:
features = self._features.squeeze(3)
features = features.squeeze(2)
else:
features = self._features
return self._value_branch(features).squeeze(1)
def _hidden_layers(self, obs):
res = self._convs(obs.permute(0, 3, 1, 2)) # switch to channel-major
res = res.squeeze(3)
res = res.squeeze(2)
return res