2020-06-20 00:05:19 +02:00
|
|
|
import numpy as np
|
|
|
|
|
2019-07-25 11:02:53 -07:00
|
|
|
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
|
2020-06-20 00:05:19 +02:00
|
|
|
from ray.rllib.models.torch.misc import normc_initializer, same_padding, \
|
2019-01-03 13:48:33 +08:00
|
|
|
SlimConv2d, SlimFC
|
2020-09-06 10:58:00 +02:00
|
|
|
from ray.rllib.models.utils import get_filter_config
|
2019-01-03 13:48:33 +08:00
|
|
|
from ray.rllib.utils.annotations import override
|
2020-08-19 17:49:50 +02:00
|
|
|
from ray.rllib.utils.framework import try_import_torch
|
2019-12-30 15:27:32 -05:00
|
|
|
|
|
|
|
_, nn = try_import_torch()
|
2017-11-12 00:20:33 -08:00
|
|
|
|
|
|
|
|
2020-06-10 15:41:59 +02:00
|
|
|
class VisionNetwork(TorchModelV2, nn.Module):
|
2019-01-03 13:48:33 +08:00
|
|
|
"""Generic vision network."""
|
2017-11-12 00:20:33 -08:00
|
|
|
|
2019-07-25 11:02:53 -07:00
|
|
|
def __init__(self, obs_space, action_space, num_outputs, model_config,
|
|
|
|
name):
|
2020-08-07 12:04:17 +02:00
|
|
|
if not model_config.get("conv_filters"):
|
2020-09-06 10:58:00 +02:00
|
|
|
model_config["conv_filters"] = get_filter_config(obs_space.shape)
|
2020-08-07 12:04:17 +02:00
|
|
|
|
2019-07-27 02:08:16 -07:00
|
|
|
TorchModelV2.__init__(self, obs_space, action_space, num_outputs,
|
|
|
|
model_config, name)
|
2020-06-10 15:41:59 +02:00
|
|
|
nn.Module.__init__(self)
|
2019-07-25 11:02:53 -07:00
|
|
|
|
2020-08-19 17:49:50 +02:00
|
|
|
activation = self.model_config.get("conv_activation")
|
2020-08-07 12:04:17 +02:00
|
|
|
filters = self.model_config["conv_filters"]
|
|
|
|
no_final_linear = self.model_config.get("no_final_linear")
|
|
|
|
vf_share_layers = self.model_config.get("vf_share_layers")
|
2020-06-20 00:05:19 +02:00
|
|
|
|
|
|
|
# Whether the last layer is the output of a Flattened (rather than
|
|
|
|
# a n x (1,1) Conv2D).
|
|
|
|
self.last_layer_is_flattened = False
|
|
|
|
self._logits = None
|
2017-11-12 00:20:33 -08:00
|
|
|
|
2020-04-15 13:25:16 +02:00
|
|
|
layers = []
|
2019-01-03 13:48:33 +08:00
|
|
|
(w, h, in_channels) = obs_space.shape
|
|
|
|
in_size = [w, h]
|
2017-11-12 00:20:33 -08:00
|
|
|
for out_channels, kernel, stride in filters[:-1]:
|
2020-06-20 00:05:19 +02:00
|
|
|
padding, out_size = same_padding(in_size, kernel, [stride, stride])
|
2018-05-30 10:48:11 -07:00
|
|
|
layers.append(
|
2020-04-15 13:25:16 +02:00
|
|
|
SlimConv2d(
|
|
|
|
in_channels,
|
|
|
|
out_channels,
|
|
|
|
kernel,
|
|
|
|
stride,
|
|
|
|
padding,
|
|
|
|
activation_fn=activation))
|
2017-11-12 00:20:33 -08:00
|
|
|
in_channels = out_channels
|
|
|
|
in_size = out_size
|
|
|
|
|
|
|
|
out_channels, kernel, stride = filters[-1]
|
2020-06-20 00:05:19 +02:00
|
|
|
|
|
|
|
# No final linear: Last layer is a Conv2D and uses num_outputs.
|
|
|
|
if no_final_linear and num_outputs:
|
|
|
|
layers.append(
|
|
|
|
SlimConv2d(
|
|
|
|
in_channels,
|
|
|
|
num_outputs,
|
|
|
|
kernel,
|
|
|
|
stride,
|
|
|
|
None, # padding=valid
|
|
|
|
activation_fn=activation))
|
|
|
|
out_channels = num_outputs
|
|
|
|
# Finish network normally (w/o overriding last layer size with
|
|
|
|
# `num_outputs`), then add another linear one of size `num_outputs`.
|
|
|
|
else:
|
|
|
|
layers.append(
|
|
|
|
SlimConv2d(
|
|
|
|
in_channels,
|
|
|
|
out_channels,
|
|
|
|
kernel,
|
|
|
|
stride,
|
|
|
|
None, # padding=valid
|
|
|
|
activation_fn=activation))
|
|
|
|
|
|
|
|
# num_outputs defined. Use that to create an exact
|
|
|
|
# `num_output`-sized (1,1)-Conv2D.
|
|
|
|
if num_outputs:
|
|
|
|
in_size = [
|
|
|
|
np.ceil((in_size[0] - kernel[0]) / stride),
|
|
|
|
np.ceil((in_size[1] - kernel[1]) / stride)
|
|
|
|
]
|
|
|
|
padding, _ = same_padding(in_size, [1, 1], [1, 1])
|
|
|
|
self._logits = SlimConv2d(
|
|
|
|
out_channels,
|
|
|
|
num_outputs, [1, 1],
|
|
|
|
1,
|
|
|
|
padding,
|
|
|
|
activation_fn=None)
|
|
|
|
# num_outputs not known -> Flatten, then set self.num_outputs
|
|
|
|
# to the resulting number of nodes.
|
|
|
|
else:
|
|
|
|
self.last_layer_is_flattened = True
|
|
|
|
layers.append(nn.Flatten())
|
|
|
|
self.num_outputs = out_channels
|
|
|
|
|
2017-11-12 00:20:33 -08:00
|
|
|
self._convs = nn.Sequential(*layers)
|
|
|
|
|
2020-06-20 00:05:19 +02:00
|
|
|
# Build the value layers
|
|
|
|
self._value_branch_separate = self._value_branch = None
|
|
|
|
if vf_share_layers:
|
|
|
|
self._value_branch = SlimFC(
|
2020-08-19 17:49:50 +02:00
|
|
|
out_channels,
|
|
|
|
1,
|
|
|
|
initializer=normc_initializer(0.01),
|
|
|
|
activation_fn=None)
|
2020-06-20 00:05:19 +02:00
|
|
|
else:
|
|
|
|
vf_layers = []
|
|
|
|
(w, h, in_channels) = obs_space.shape
|
|
|
|
in_size = [w, h]
|
|
|
|
for out_channels, kernel, stride in filters[:-1]:
|
|
|
|
padding, out_size = same_padding(in_size, kernel,
|
|
|
|
[stride, stride])
|
|
|
|
vf_layers.append(
|
|
|
|
SlimConv2d(
|
|
|
|
in_channels,
|
|
|
|
out_channels,
|
|
|
|
kernel,
|
|
|
|
stride,
|
|
|
|
padding,
|
|
|
|
activation_fn=activation))
|
|
|
|
in_channels = out_channels
|
|
|
|
in_size = out_size
|
|
|
|
|
|
|
|
out_channels, kernel, stride = filters[-1]
|
|
|
|
vf_layers.append(
|
|
|
|
SlimConv2d(
|
|
|
|
in_channels,
|
|
|
|
out_channels,
|
|
|
|
kernel,
|
|
|
|
stride,
|
|
|
|
None,
|
|
|
|
activation_fn=activation))
|
|
|
|
|
|
|
|
vf_layers.append(
|
|
|
|
SlimConv2d(
|
|
|
|
in_channels=out_channels,
|
|
|
|
out_channels=1,
|
|
|
|
kernel=1,
|
|
|
|
stride=1,
|
2020-08-19 17:49:50 +02:00
|
|
|
padding=None,
|
|
|
|
activation_fn=None))
|
2020-06-20 00:05:19 +02:00
|
|
|
self._value_branch_separate = nn.Sequential(*vf_layers)
|
|
|
|
|
2020-05-14 10:15:50 +02:00
|
|
|
# Holds the current "base" output (before logits layer).
|
|
|
|
self._features = None
|
2017-11-12 00:20:33 -08:00
|
|
|
|
2019-07-25 11:02:53 -07:00
|
|
|
@override(TorchModelV2)
|
|
|
|
def forward(self, input_dict, state, seq_lens):
|
2020-06-20 00:05:19 +02:00
|
|
|
self._features = input_dict["obs"].float().permute(0, 3, 1, 2)
|
|
|
|
conv_out = self._convs(self._features)
|
|
|
|
# Store features to save forward pass when getting value_function out.
|
|
|
|
if not self._value_branch_separate:
|
|
|
|
self._features = conv_out
|
|
|
|
|
|
|
|
if not self.last_layer_is_flattened:
|
|
|
|
if self._logits:
|
|
|
|
conv_out = self._logits(conv_out)
|
2020-08-07 12:04:17 +02:00
|
|
|
if conv_out.shape[2] != 1 or conv_out.shape[3] != 1:
|
|
|
|
raise ValueError(
|
|
|
|
"Given `conv_filters` ({}) do not result in a [B, {} "
|
|
|
|
"(`num_outputs`), 1, 1] shape (but in {})! Please adjust "
|
|
|
|
"your Conv2D stack such that the last 2 dims are both "
|
2020-08-07 16:49:49 -07:00
|
|
|
"1.".format(self.model_config["conv_filters"],
|
|
|
|
self.num_outputs, list(conv_out.shape)))
|
2020-06-20 00:05:19 +02:00
|
|
|
logits = conv_out.squeeze(3)
|
|
|
|
logits = logits.squeeze(2)
|
2020-08-07 12:04:17 +02:00
|
|
|
|
2020-06-20 00:05:19 +02:00
|
|
|
return logits, state
|
|
|
|
else:
|
|
|
|
return conv_out, state
|
2019-07-25 11:02:53 -07:00
|
|
|
|
|
|
|
@override(TorchModelV2)
|
|
|
|
def value_function(self):
|
2020-05-14 10:15:50 +02:00
|
|
|
assert self._features is not None, "must call forward() first"
|
2020-06-20 00:05:19 +02:00
|
|
|
if self._value_branch_separate:
|
|
|
|
value = self._value_branch_separate(self._features)
|
|
|
|
value = value.squeeze(3)
|
|
|
|
value = value.squeeze(2)
|
|
|
|
return value.squeeze(1)
|
|
|
|
else:
|
|
|
|
if not self.last_layer_is_flattened:
|
|
|
|
features = self._features.squeeze(3)
|
|
|
|
features = features.squeeze(2)
|
|
|
|
else:
|
|
|
|
features = self._features
|
|
|
|
return self._value_branch(features).squeeze(1)
|
2017-11-12 00:20:33 -08:00
|
|
|
|
2019-01-03 13:48:33 +08:00
|
|
|
def _hidden_layers(self, obs):
|
|
|
|
res = self._convs(obs.permute(0, 3, 1, 2)) # switch to channel-major
|
2017-11-12 00:20:33 -08:00
|
|
|
res = res.squeeze(3)
|
|
|
|
res = res.squeeze(2)
|
|
|
|
return res
|